Mathematical Toolkit

Homework 3

Due: April 26, 2023

1. Random Orderings.

Let Ω be the set of all n! permutations of $\{1, ..., n\}$, and ν be the uniform distribution over Ω . That is, $\nu(\omega) = 1/n!$ for each permutation $\omega \in \Omega$.

- (a) Given permutation $\omega = (\omega_1, ..., \omega_n)$, an *inversion* is a pair (i, j) such that i < j but $\omega_i > \omega_j$. Let $X(\omega)$ be the number of inversions in ω . What is $\mathbb{E}[X]$? Be clear about your reasoning.
- (b) We say that position *i* is a *prefix-maximum* in permutation $\omega = (\omega_1, ..., \omega_n)$ if $\omega_i > \omega_j$ for all j < i. Let $Y(\omega)$ be the number of prefix maxima in ω . What is $\mathbb{E}[Y]$? Explain your reasoning.

2. *t*-Universal Hashing.

We say that *H* is *t*-universal over range *M* if, for every fixed sequence of *t* distinct inputs s_1, s_2, \ldots, s_t and for any *h* chosen at random according to *H*, the sequence $h(s_1), h(s_2), \ldots, h(s_t)$ is equally likely to be any of the M^t sequences of length *t* with elements drawn from $\{0, 1, \ldots, M - 1\}$. It's easy to see that if *H* is 2-universal then it is universal.

Consider strings *s* of length *n* from the alphabet $\{0, 1, ..., k - 1\}$ where $k \ge 2$. One way to construct a hash function over such inputs is to generate a 2-dimensional $n \times k$ table *T* of *b*-bit random numbers where $b = \lg(M)$. The first index of $T_{i,j}$ is in the range [1, n] and the second index is in the range [0, k - 1]. Here the hash function h_T is defined as follows:

$$h_T(s) = \bigoplus_{i=1}^n T_{i,s[i]}$$

where s[i] is the *i*th character in *s* and " \bigoplus " represents the xor function of integers represented in binary.

(a) Prove that this construction is *not* 4-universal.

(b) Prove that this construction *is* 3-universal.

3. MAX-SAT Revisited.

In class, we saw that if *F* is a *k*-CNF formula of *m* clauses in which every clause has size exactly *k* (and you are not allowed to repeat variables inside a clause), then there must exist an assignment satisfying at least $\lceil m(1-1/2^k) \rceil$ clauses of *F*. In this question, you will give an efficient deterministic algorithm to find such an assignment.

- (a) Prove the following claim: Suppose we have a CNF formula *F* of *m* clauses, with m_1 clauses of size 1, m_2 of size 2, etc. ($m = m_1 + m_2 + ...$). Let *X* be a random variable denoting the number of clauses satisfied in a random assignment. Then $\mathbb{E}[X] = \sum_k m_k (1 1/2^k)$.
- (b) Here is a deterministic algorithm. Compute $E = \mathbb{E}[X]$ using the formula from part (a), and then compute $E_0 = \mathbb{E}[X|x_1 = 0]$ and $E_1 = \mathbb{E}[X|x_1 = 1]$ using a similar formula. Set x_1 based on whichever of E_0 and E_1 is larger. Now, recurse on the formula remaining.
 - i. Explain how you can efficiently compute E_0 and E_1 in this algorithm.
 - ii. Explain why this algorithm is guaranteed to find a solution that satisfies at least $E = \mathbb{E}[X]$ clauses.

Note: this approach is called the "conditional expectation method"