Mathematical Toolkit

Homework 1

Due: March 29, 2023

1. Field trip.

Recall that for a prime p, $\mathbb{F} = \mathbb{Q}^2$ (pairs of rational numbers) is a field with the notions of addition and multiplication defined as

$$(a,b) + (c,d) = (a+c,b+d)$$
 and $(a,b) \cdot (c,d) = (ac+pbd,ad+bc)$.

- (a) What are the additive and multiplicative identities? What is the multiplicative inverse of (a, b) for $(a, b) \neq 0_{\mathbb{F}}$?
- (b) Does everything still go through for p = 6? How about p = 4?
- (c) When p is such that \mathbb{F} defined above is a field, the set

$$S = \{a + b\sqrt{p} \mid a, b \in \mathbb{Q}\}$$

can be thought of as a vector space over the field Q. What is its dimension? What is a basis for it?

2. Basis Basics.

If $S = \{v_1, ..., v_n\}$ is a basis for *V*, then we know that any $v \in V$ is in the span of *S* and so can be written as $a_1v_1 + ... + a_nv_n$ for some $a_1, ..., a_n$.

- (a) Prove this decomposition is unique.
- (b) Give an example of a case of a non-unique decomposition (i.e., multiple ways of writing *v* as a linear combination of vectors in *S*) when *S* is *not* a linearly independent set.

3. Linear equations.

Let $A \in \mathbb{F}_2^{m \times n}$ be a matrix with entries in the field \mathbb{F}_2 and let m < n (*m* rows and *n* columns). Let all rows of *A* be linearly independent in the vector space \mathbb{F}_2^n over the field \mathbb{F}_2 .

- (a) What is the dimension of the space ker(A)?
- (b) How many vectors x ∈ F₂ⁿ satisfy the system of equations Ax = 0? (Note that here 0 denotes the zero vector in F₂^m.)
- (c) Let $b \in \mathbb{F}_2^m$ be such that the system of equations Ax = b has at least one solution, say x_0 . Show that $\{x x_0 \mid Ax = b\} = \ker(A)$. What is the total number of solutions to the system Ax = b?

For this problem you may use the fact that for a matrix $A \in \mathbb{F}^{m \times n}$ for any field \mathbb{F} , if $R \subseteq \mathbb{F}^n$ denotes the set of its rows and $C \subseteq \mathbb{F}^m$ denotes the set of its columns, then

$$\dim(\operatorname{Span}(R)) = \dim(\operatorname{Span}(C)).$$

The quantity $\dim(\text{Span}(R))$ is called the row-rank of A and $\dim(\text{Span}(C))$ is called the column-rank of A.

4. Inner Products.

Consider the vector space $\mathbb{R}[x]$ of polynomials in a single variable *x* with coefficients in \mathbb{R} . Define the function $\mu : \mathbb{R}[x] \times \mathbb{R}[x] \to \mathbb{R}$ as

$$\mu(P,Q) = \text{degree}(P \cdot Q) \text{ for all } P, Q \in \mathbb{R}[x],$$

where $P \cdot Q$ denotes the product of the two polynomials *P* and *Q* (which is another polynomial). Is the function μ an inner product? Justify your answer.

5. Eigenvalues.

Let *V* be a finite dimensional vector space over a field \mathbb{F} and $\alpha, \beta : V \to V$ be linear operators. Show that for every $\lambda \in \mathbb{F}$ (including $0_{\mathbb{F}}$), λ is an eigenvalue of $\alpha\beta$ if and only if λ is an eigenvalue of $\beta\alpha$. Here, $\alpha\beta$ denotes the linear transformation $\alpha \circ \beta$ defined as $\alpha\beta(v) = \alpha(\beta(v)) \forall v \in V$ (and $\beta\alpha$ is defined similarly).