Simple randomized
algorithms for auction and
pricing problems

Avrim Blum
CMU

Joint work with Nina Balcan, Jason Hartline,
and Yishay Mansour

[Presented at DIMACS conference in honor of Joel Spencer’s 60" birthday]

Plan

A couple problems in intersection of
CS and economics with simple
randomized algorithms.

Properties:

¢ About pricing, revenue, etc.

+ Inputs to problem given by entities who have
their own interest in the outcome of the
procedure.

Imagine the following setting...

¢ Say you are a supermarket trying to decide what price to
sell your goods (apples, pop-tarts, detergent, ...). Or
cell-phone company selling various services.

+ Customers have shopping lists. Decide what to buy or
whether to shop at all based on prices of items in list.
¢ Goal: set prices to maximize revenue

= Simple case: customers make separate decisions on
each item based on its own price.

= Harder case: customers buy everything or nothing
based on sum of prices in list.

= Or could be even more complex.

"Unlimited supply combinatorial auction with additive /
single-minded / general bidders"

Three versions (easiest to hardest)

Algorithmic
= Customers' shopping lists / valuations known
to the algorithm. (Seller knows market well)
Incentive-compatible auction
= Customers submit lists / valuations to
mechanism, which decides who gets what for
how much. Must be in customers' interest to
report truthfully.
On-line pricing
= Customers arrive one at a time, buy what they
want at current prices. Seller modifies
prices over time.

Algorithmic problem, single-minded bidders

+ You are a supermarket trying to decide what price to
sell your goods (apples, pop-tarts, detergent, ...). Or
cell-phone company selling various services.

+ Each customer i has a shopping list L; and will only shop
if the total cost of items in L, is at most some amount ¢;
(otherwise he will go elsewhere).

What prices on the items will make you the most money?

Say all marginal costs to you are 0, and you know all the
(Li, ¢;) pairs.

¢ Easy if dll L; are of size 1. (Why?)
¢ What happens if all L, are of size 2?

Algorithmic problem, single-minded bidders

+ Given a multigraph G with values c, on the edges e.
* Goal: assign prices p, > 0 on vertices to maximize:
Z Pu+ po

e=(u,v)
Putpo S ce

+ NP-hard.

+ Question 1: can you get a factor 2 approx if G is
bipartite?




Algorithmic problem, single-minded bidders

* Given a multigraph G with values c, on the edges e.

¢ Goal: assign prices p, > 0 on vertices to maximize:
15

Z Ppu+ po
¢ = (u,v)
putpo<ce 0

25
OPT, OPT,
+ NP-hard.

* Question 1: can you get a factor 2 approx if & is
bipartite? (Set prices on one side to 0, optimize other)

* Question 2: can you get a factor 4 algorithm in general?

Algorithmic problem, single-minded bidders

* Given a multigraph G with values ¢, on the edges e.
* Goal: assign prices p, > 0 on vertices to maximize:

Z Pu + po

¢ = (u,v)
Put Pe < o

+ NP-hard.

* Question 1: can you get a factor 2 approx if 6 is
bipartite? (Set prices on one side to 0, optimize other)

* Question 2: can you get a factor 4 algorithm in general?
(sure, flip a coin for each node to put inL or R)
+ Question 3: can you beat this? (We don't know)

Algorithmic problem, single-minded bidders

What about lists of size < k?
¢ Get a k-hypergraph problem

* Generalization of previous alg: 4>‘
= Put each node in L with prob 1/k, d
inRwith prob 1-1/k.

= Let GOOD = set of edges with
exactly one endpt inL. Set prices
inR to 0, optimize L wrt GOOD.

+ Let OPT;, be revenue OPT makes selling item j to
customer e, Let X;, be indicator RV for jeL A ecGOOD.

¢ Our expected profit at least:
E[Y X; OPT, | =Y E[X,]OPT,. = 0(1/k)OPT

Algorithmic problem, single-minded bidders

Summary:

+ 4 approx for graph case.

* O(k) approx for k-hypergraph case.

+ General O(log mn) approx by picking the best
single price [GHKKKMO05].

* Q(log® n) hardness for general case [DFHS06].

Incentive-compatible auction problem

Same setup, but we don't know lists or
valuations.

Goal: incentive compatible auction

+ Customers submit valuation information.

+ Auction mechanism determines who buys what
for how much.
+ Must be in customers' self-interest to submit

their true valuations. _

Incentive-compatible auction problem

Generic approach to incentive-compatibility
+ In the mechanism, each bidder is offered a set
of prices that does not depend on what they

submitted.

+ Mechanism then has them purchase whatever
subset has the greatest (valuation - cost).

7 s

=
\
\




Incentive-compatible auction problem

*+ A lot like a machine-learning problem:
= Bidders are like examples
= Preferences/valuations are like labels
= Goal is to use labels of other examples to "predict”

label of current one.

Generic approach to incentive-compatibility

Incentive-compatible auction problem

Simple randomized reduction to alg problem

¢ Take set S of bids and split randomly into two
groups Sy, S,.

¢ Run (approx) alg on S; to get good item prices
for S, and use them as offers to bidders in S,.

¢ Vice-versaon S, to S,.

Incentive-compatible auction problem

Guarantee:
+ If all valuations are between 1 and h, then

loses only factor of (1+€) in revenue.

¢ Analysis idea: not too many sets of prices.
Bound each one using McDiarmid tail inequality.

Extensions:
¢ Pricing functions s, ﬁ@ﬁ
+ Bound # bidders

needed as fn of

complexity of class of | g, @@@
pricing functions

considered.

B(hn/?) bidders are sufficient so that whp this

On-line pricing

Customers arrive one at a time, buy or don't buy at
current prices.

+ In auction model, we know valuation info for customers
1,...,i-1 when customer i arrives.

+ In posted-price model, only know who bought what for
how much.

* Goal is to do well compared to best fixed set of item
prices.

Fits nicely with setting of online learning in
“experts” or "bandit" model.

On-line pricing

Can use approach of [Kalai-Vempala] algorithm,

based on [Hannan57]. cpopep ool

= Hallucinate fake bidders according to appropriate
probability distribution.

= Choose optimal prices for combined total (real +
imagined) of bidders seen so far.

= Approach works for problems fitting a certain form.
In our case, (e.g., for approx. algorithms given in 1st
half of talk) can run separate online auctions over
items in L, people in GOOD.

= Guarantee: perform comparably to best fixed set of
item prices (for pts in L, people in GOOD).

Conclusions & Open problems

+ Simple randomized algs achieving factor 4 for graph-
vertex pricing problem. Factor O(k) for k-hypergraph
vertex pricing.

¢ Can derandomize (but what's the fun in that!)

+ Can then use generic technique to apply in auction
setting. Use online learning methods to apply in online
setting.

Open Problems:

* 4 -¢, o(k).

¢ How well can you do if negative pricing is allowed (pricing
items below cost)?




