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Why Do We Want a Good Ratio Anyway?

Approximation Stability and Proxy Objectives
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1 Overview

When real-world problems are abstracted as optimization problems, it is often the case that the
formal objective used in the optimization problem is serving as a proxy for some other underlying
goal. For example, if we have a clustering problem such as clustering proteins by function, we might
represent our data (protein sequences) in some natural way as points in a metric space, and then
abstract this as a k-median problem where we aim to find k clusters, along with a center point for
each cluster, such that the sum of distances of the data points to their cluster centers is minimized.
Here, the k-median objective is serving as a proxy. Our hope is that we have represented data in
such a way that a good k-median solution will translate to a good solution to the true goal (having
clusters that actually match the proteins’ functions).

In the field of Approximation Algorithms, we typically ignore this latter aspect and do not aim to
model it: instead, we consider the optimization problem as given, and aim to understand the best
worst-case approximation ratios achievable. Here, we consider: what happens if we incorporate the
connection between the two objectives into the theory? That is, suppose that the reason we want
a good approximation ratio is that we believe that our instance satisfies the promise that a good
approximation to the formal objective (e.g., k-median) will imply a near-optimal solution to our
underlying goal (e.g., having our clustering be a good match to an unknown target clustering). Does
this allow us to achieve better guarantees, and perhaps get around what on worst-case instances
would be intrinsic computational barriers?

What we find is that for certain problems, this condition, which we will call approximation-stability,
yields a number of structural properties of the instance that can indeed be used algorithmically.
For example, continuing with the case of clustering, the best k-median approximation guarantee
known for worst-case instances is a factor 3+ ε [AGK+04] (building on a long line of work initiated
by [CGTS99]), and it is known to be NP-hard to beat a factor of 1 + 1/e [JMS02].1 Therefore, one
would think that in order to produce a guarantee on the quality of the solution found, one would
need (for the current best algorithms) an assumption that applied to 3-approximations. Further,
one would think that a promise such as “on this instance, achieving a 1.1-approximation to the
k-median optimal is sufficient to be ε-close to the unknown target clustering” would be useless,
given the NP-hardness of achieving a 1.1-approximation in general. However, this is not the case.
In fact, for both the k-median and k-means problems, it is shown in [BBG09] that one can devise
algorithms that will efficiently find clusterings that are O(ε)-close to the unknown target clustering
under this promise; similar guarantees for the min-sum objective are given in [BB09]. Further, for
k-median and k-means objectives, it is shown in [ABS10] that if target clusters are larger than size

1Throughout this text, k should not be viewed as a constant (an O(nk)-time exact algorithm is trivial for k-median,
for instance) and instead as some function of n such as n0.1.

1



εn (for this to be interesting, one should view ε as sub-constant) then under this condition one can
in fact obtain a PTAS (which in turn, by the promise, would yield a solution that is ε-close to the
target). These results suggest that in cases where the objective function is a proxy for some other
goal, such as matching a target clustering, modeling the connection between the two goals may be
able to provide a theoretically-analyzable avenue around worst-case hardness results.

Let us now define approximation-stability more generally.2

Definition 1 (Approximation Stability). An instance having some unknown correct solution C∗
satisfies (c, ε)-approximation stability with respect to objective function Φ and distance measure
dist, if all solutions C with Φ(C) ≤ c · Φ(OPT) satisfy dist(C, C∗) ≤ ε. Here, OPT is the optimal
solution under objective Φ, which need not necessarily be the same as C∗.

In the case of clustering, a “solution” is a clustering and the natural notion of distance is the
fraction of points would have to be reassigned in one clustering in order to make it equal to the
other.

Approximation stability is in essence a promise condition: a promise that any sufficiently good
approximation to the given objective Φ will be close to a solution one is looking for. It can be
viewed as a formal motivation for aiming to approximate the measurable objective Φ (such as k-
means) when the ultimate goal is to match some desired solution C∗ well. To put it another way, if
the condition does not hold, then one would want to investigate what sort of properties one should
aim for in a solution beyond having a near-optimal objective value.

Clearly if an instance satisfies (c, ε)-approximation stability for a value c that is greater than or
equal to the best approximation guarantee known for the problem, then we can immediately find
a solution that is ε-close to the target (namely, just run the approximation algorithm). So, the
interesting case is when c is less than the best known guarantee, or even when it is below a hardness
threshold.

As mentioned above, for clustering under the k-median, k-means, or min-sum objectives, we have
algorithms [BBG09, BB09] that can use (c, ε)-approximation stability to find solutions that are
O(ε)-close to the desired solution, for any constant c > 1. An interesting open question is to
consider other clustering-based objective functions. For example, for the sparsest cut problem, the
best approximation guarantee known is a factor O(

√
log n) [ARV04]. Suppose an instance satisfies

(c, ε)-approximation stability for c = 100: is this sufficient to find either an O(1) approximation to
the objective, or (as above) a solution that differs in only an O(ε) fraction of points compared to
a target partitioning?

One can also consider other kinds of problems. For example [ABB+10, BB11] consider the problem
of finding approximate Nash equilibria. In this context, approximation-stability means that all
approximate equilibria should be close (as probability distributions) to some unknown true equi-
librium, motivated by settings where the goal is to predict behavior of players. Another natural
setting in which to examine approximation-stability would be the problem of phylogenetic tree
reconstruction. Here, one typically defines a Steiner-tree-like objective function, and yet the true
goal is to match an unknown correct evolutionary tree.

2In the conference version of [BBG09] this was called the “(c, ε) property for objective Φ”. This was changed to
the more descriptive term “approximation stability” in the long version and in subsequent papers.
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2 More information

The following are papers that analyze approximation-stability for a number of different prob-
lems, as well as papers that experimentally examine the performance of algorithms designed for
approximation-stability in real applications.

[BBG09] This work introduced the notion of approximation-stability, and gave results for clus-
tering instances stable to k-median, k-means, and min-sum objectives. For k-median and
k-means, it shows that (1 + α, ε)-approximation stability is sufficient to efficiently produce
a clustering of distance O(ε/α) from the target clustering; for the min-sum objective, the
same conclusion is reached under the additional assumption that all target clusters are large
compared to εn/α. This work also showed that when all target clusters are large compared
to εn/α, for the k-median objective one can produce a clustering of distance ≤ ε from the
target (i.e., as good as if one had a 1 + α approximation algorithm).

[BB09] This work gives improved results for the min-sum objective, removing the size restriction
on clusters needed by [BBG09], as well as presenting additional improvements. This work
also presents results for the correlation-clustering objective.

[VBR+10, VBR+11] These papers consider the important problem of clustering protein se-
quences by function, giving both theoretical and experimental results. First, due to computa-
tional constraints in this setting, these papers consider a framework in which (approximate)
pairwise distance information between data points can only be obtained via conducting a
small number of “one versus all” queries. [VBR+10] then develops a fast algorithm that oper-
ates under these constraints and, building on the analysis of [BBG09], proves that it achieves
strong guarantees under k-median approximation-stability. [VBR+11] design an algorithm
with similar guarantees for stability to the min-sum objective. The authors then apply their
algorithms to clustering protein sequences from two large datasets, Pfam and SCOP, com-
paring the output of their algorithms and existing methods against a ‘ground-truth’ manual
classification. They demonstrate that their accuracy on Pfam is substantially better than,
and on SCOP a little better than (but much faster than) the best competing method. In-
terestingly, on these datasets, the algorithm designed for the k-median objective achieves
generally higher accuracy than the algorithm designed for min-sum.

[ABS10] This work considers the promise condition (for k-median or k-means objectives) that
merging any two clusters in the optimal solution for that objective raises the cost of that
solution by a factor 1 + α for some constant α > 0. This is a relaxation of (1 + α, ε)-
approximation stability in the case that all clusters in the target have size > εn.3 Under this
condition, [ABS10] achieve a PTAS for the given objective (a 1 + δ approximation in time
polynomial in n and k but exponential in 1/δ and 1/α).4 This in turn implies the solution is
ε-close to the target if approximation-stability indeed holds.

[ABB+10, BB11] This work considers approximation-stability and related conditions for the
problem of finding equilibria in 2-player general-sum games. Awasthi et al. [ABB+10] con-
siders the condition that all approximate equilibria are contained within a small ball around

3Because in that case, any solution using only k − 1 clusters would have distance greater than ε from the target,
and approximation-stability would therefore require that all such clusterings have cost greater than (1 + α)Φ(OPT).

4Earlier work of Ostrovsky et al. [ORSS06] achieved this guarantee but under the condition that the cost of the
optimal (k − 1)-clustering should be an Ω(1/δ2) factor larger than the cost of the optimal k-clustering.
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some true equilibrium (e.g., if the goal is to predict behavior that you believe is at a Nash
equilibrium, then this is the condition you would want in order for an approximate equilibrium
to be a good prediction). It gives a polynomial-time algorithm to find approximate equilibria
if this ball is very small, and more generally gives improved running time over [LMM03] as
a function of the ball radius. Balcan and Braverman [BB11] considers a weaker condition,
only requiring that for every approximate equilibrium (or even just every well-supported ap-
proximate equilibrium) there exist some Nash equilibrium that is close. They also relate this
condition to the notion of perturbation-resilience of Bilu and Linial [BL10], as well as connect
to related notions considered in [LMM06].
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