
SEPARATING DISTRIBUTION-FREE AND MISTAKE-BOUND

LEARNING MODELS OVER THE BOOLEAN DOMAIN

AVRIM L. BLUM∗

Abstract. Two of the most commonly used models in computational learning theory are the
distribution-free model in which examples are chosen from a fixed but arbitrary distribution, and
the absolute mistake-bound model in which examples are presented in an arbitrary order. Over
the Boolean domain {0, 1}n, it is known that if the learner is allowed unlimited computational
resources then any concept class learnable in one model is also learnable in the other. In addition,
any polynomial-time learning algorithm for a concept class in the mistake-bound model can be
transformed into one that learns the class in the distribution-free model.

This paper shows that if one-way functions exist, then the mistake-bound model is strictly
harder than the distribution-free model for polynomial-time learning. Specifically, given a one-way
function, we show how to create a concept class over {0, 1}n that is learnable in polynomial time in
the distribution-free model, but not in the absolute mistake-bound model. In addition, the concept
class remains hard to learn in the mistake-bound model even if the learner is allowed a polynomial
number of membership queries.

The concepts considered are based upon the Goldreich, Goldwasser and Micali random function
construction [9] and involve creating the following new cryptographic object: an exponentially long
sequence of strings σ1, σ2, . . . , σr over {0, 1}n that is hard to compute in one direction (given σi one
cannot compute σj for j < i) but is easy to compute and even make random-access jumps in the
other direction (given σi and j > i one can compute σj , even if j is exponentially larger than i).
Similar sequences considered previously [6, 7] did not allow random-access jumps forward without
knowledge of a seed allowing one to compute backwards as well.

Key words. Machine learning theory, learning models, one-way functions

AMS subject classifications. 68Q25, 68T05, 94A60

1. Introduction. Two of the most popular theoretical models for learning from
examples are the distribution-free model, also known as the probably-approximately-

correct (PAC) or “Valiant-style” learning model [17, 25], and the absolute mistake-
bound model [21]. In both models, the goal of a learner is to approximately infer some
unknown target concept from positive and negative examples of that concept. In the
distribution-free model, an adversary chooses a distribution over the labeled examples
from which the learner may sample. The learner, from a polynomial (in relevant
parameters discussed in Section 2) number of samples, must produce a hypothesis that
agrees with the target concept over most of the distribution. In the mistake-bound
model, the adversary instead actually chooses the order in which examples appear.
Here, the learner sees unlabeled examples, and after each must predict whether it is
positive or negative before being told its true classification. The job of the learner in
the mistake-bound model is to make a polynomially bounded number of mistakes.

In this paper, we will consider the “representation-independent” versions of the
distribution-free and mistake-bound models, also known as the “prediction” model
[12, 13], in which the learner’s hypotheses need not be of the same form as the target
concept. The mistake-bound model is equivalent to Angluin’s equivalence query model
[3, 21] when query hypotheses are similarly not restricted.

It is known that any algorithm for learning a concept class in the mistake-bound
model can be converted to one that will learn the class in the distribution-free model

∗ School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213-3891. Email:
avrim@cs.cmu.edu. This work was done while the author was at the MIT Lab for Computer Sci-
ence and supported by an NSF Graduate Fellowship, NSF grant CCR-8914428 and the Siemens
Corporation.

1



2 A. L. BLUM

[3, 18]. If computational considerations are ignored, then over the Boolean domain
{0, 1}n the converse holds as well. Any concept class over {0, 1}n learnable with
polynomial sample size (and not necessarily polynomial time) in the distribution-
free model can also be learned with a polynomial mistake bound (in not necessarily
polynomial time) in the mistake-bound model [3, 21]. At the heart of the proof for
this last direction is the use in the mistake-bound model of the “halving algorithm”.
This algorithm enumerates all concepts in the class, predicts according to majority
vote, and when a mistake is made throws out the concepts that predicted incorrectly.
The equivalence of learnability in the non-computational setting has led researchers
to wonder (eg. [16]) whether the models remain equivalent when computation is

limited—especially in light of recent work showing that the distribution-free model
is equivalent to a seemingly much easier form of learning known as “weak-learning”
[24].

In this paper we show that if we consider only algorithms that run in polyno-
mial time, then if one-way functions exist, the distribution-free and mistake-bound
models over {0, 1}n are not equivalent. Specifically, we create a concept class start-
ing from a pseudorandom bit generator [6, 7, 26], which is learnable in polynomial
time in the distribution-free model but not in the mistake-bound model. The exis-
tence of pseudorandom bit generators has been proven equivalent to the existence of
one-way functions [20, 15, 11]. The concept class we create remains hard to learn
in the mistake-bound model even if the learning algorithm is allowed membership
queries—the ability to ask whether examples of its own choosing belong to the target
concept. So, for instance, the position of this concept class contrasts with that of
deterministic finite automata (DFAs) which are learnable in a mistake-bound model
with membership queries [2] but not in the distribution-free model [19].

The concept class created is based upon the Goldreich, Goldwasser, and Micali
random function construction [9] and involves creating the following new crypto-
graphic object: an exponentially long sequence of strings σ1, σ2, . . . , σr over {0, 1}n

that is hard to compute in one direction (given σi one cannot compute σj for j < i)
but is easy to compute and even make random-access jumps in the other direction
(given σi and j > i one can compute σj , even if j is exponentially larger than i). This
sequence is “stronger” than those considered previously [6, 7] in the sense that for
those sequences, the only known way to compute in the forward direction (without
knowing the seed that allows one to compute in the other direction as well) is to
compute the strings sequentially in order.

The sequence of strings is useful for separating the learning models for roughly the
following reason. Attached to each σi is a classification that can only be computed
given σj for j < i. So, an adversary can present the strings in the reverse order
σr, σr−1, . . . and cause the learner to make a mistake nearly half the time. However,
for any distribution over the strings, if a learner collects m samples, we expect that
about m

m+1 of the distribution falls on the “easy side” (the set of σj for j > i) of the
string σi of least index seen. The “random-access forward” property of the sequence
then allows the distribution-free learner to use σi as a predictor for any σj for j > i.
Notice that without the random-access property, then even on a uniform distribution
the learner might still fail because the examples seen would likely all be exponentially
far away from each other.

An earlier version of this paper appears in [5].

2. Notation, definitions, and background . An example x is an element of
{0, 1}n and a concept is a set of examples (subset of {0, 1}n). We will also identify



SEPARATING LEARNING MODELS 3

concepts with their indicator functions, defining c(x) = 1 if x ∈ c and c(x) = 0
otherwise. For a given target concept c, a labeled example of c is a pair 〈x, c(x)〉 where
x is an example and c(x) is its classification. An example x is a positive example if
c(x) = 1; otherwise it is a negative example. A concept class is a collection of concepts,
together with a (sometimes implicit) representation for each concept.1 For instance,
the class of DNF formulas consists of concepts given in a disjunctive-normal-form
representation. If c is a concept in a given concept class C, we use |c| to denote the
size of the (smallest) representation of c under C. In both the distribution-free and
mistake-bound models, the object of a learning algorithm for a concept class C is to
approximately infer an unknown target concept c ∈ C from examples. The models
differ in how examples are chosen and how successful learning is defined.

In the distribution-free model, there is some distribution D over the set of labeled
examples of the target concept. The learning algorithm is allowed to sample from
D and based on this information and knowledge of the class C to which the target
concept belongs, must produce a hypothesis h that approximates the target concept.
In particular, if c is the target concept, we say a hypothesis h has error ε if on pair
〈x, c(x)〉 chosen from D, the probability that h(x) does not equal c(x) is ε. We will
allow the hypothesis produced by the algorithm to not necessarily belong to concept
class C (this version is sometimes termed “polynomial predictability” [12, 13]). More
formally, an algorithm A learns in the distribution-free model a concept class C over
{0, 1}n if for some polynomial P , for all target concepts c ∈ C, distributions D, and
error parameters ε and δ: in time at most P (n, 1

ε
, 1

δ
, |c|) the algorithm with probability

at least 1 − δ finds a polynomial-time evaluatable hypothesis h (not necessarily from
C) with error at most ε. See Haussler et al. [12] for various equivalent formulations
of the distribution-free model.

In the mistake-bound model, instead of a distribution, we imagine there is some
adversary presenting the examples in any order it wishes. Learning is done on-line
in a sequence of stages. In each stage the adversary presents an unlabeled example
to the learner, the learner suggests a labeling, and then the learner is told whether
or not that labeling was correct. The object of the learning algorithm is to make
at most a polynomial number of mistakes. Algorithm A learns a concept class C in

the mistake-bound model if for some polynomial P , for all target concepts c ∈ C and
all orderings of the examples, the algorithm makes at most P (n, |c|) mistakes using
polynomial time in each stage [21].

A membership query is a query in which the learner selects an unlabeled example
of its own choosing and asks for (and is told) that example’s classification. We may
incorporate membership queries into the mistake-bound model by allowing the learner
at each stage to choose either to make a membership query or else to receive an
example from the adversary. We will say that Algorithm A learns a concept class
C in the mistake-bound model with membership queries if for some polynomial P ,
for all target concepts c ∈ C, the algorithm makes at most P (n, |c|) mistakes and
membership queries using polynomial time in each stage.

Note that in all models, we require a learning algorithm to run in polynomial
time. In some of the literature, this is called “polynomial learnability.”

We now review some useful notation and definitions from the cryptographic lit-
erature. If S is a set we will use the notation s∈

R
S to mean that s is chosen

1 To be rigorous, we should define a concept class C to be a family {Cn} (one for each n) where
Cn is defined over {0, 1}n. In order to avoid overly cumbersome notation, we shall assume this type
of indexing is done implicitly.



4 A. L. BLUM

uniformly at random from S. For convenience, if A is a probabilistic polynomial
time (PPT) algorithm and g is some function, we will use Pd(A, g(s)) to mean
Pr

[

A(g(s)) = 1 | s∈
R
{0, 1}d

]

. If g(s) = s we will just write Pd(A, s). In order to
simplify the statements of some of the theorems, in this paper we will use the term
“algorithm” to include circuit families (non-uniform algorithms).

Informally, a Cryptographically Strong pseudorandom Bit generator, or CSB gen-
erator to use the notation of GGM, is a deterministic polynomial-time algorithm that
given a randomly chosen input produces a longer pseudorandom output. More for-
mally we have the following.

Definition 1. A deterministic polynomial-time program G is a CSB generator
with stretch t if on input s ∈ {0, 1}k it produces a tk-bit output, and for all probabilistic

polynomial-time algorithms A, for all polynomials Q, for all sufficiently large k:

|Pk(A, G(s)) − Ptk(A, s)| <
1

Q(k)
.

That is, no polynomial-time algorithm can distinguish with a 1/poly(k) probability
between a string chosen randomly from {0, 1}tk and the output of G on a string
chosen randomly from {0, 1}k. For this paper, we will just need a CSB generator G
with stretch 2.

For a CSB generator G that on input s ∈ {0, 1}k produces a 2k-bit output G(s) =
b1, . . . , b2k, let us define the following notation.

(i) Let G0(s) be the leftmost k bits b1, . . . , bk of G(s), and let G1(s) be the
rightmost k bits bk+1, . . . , b2k.

(ii) For a d-bit string i = i1 . . . id ∈ {0, 1}d, let

Gi1···id
(s) = Gid

(Gid−1
(. . . Gi2(Gi1(s)) . . .)).

Note that this is well-defined because G0(s) and G1(s) are both k-bit strings.

(iii) Let G′
0(s) = G1(s) and let G′

1(s) = λ (i.e., the empty string). Think of G′

as a rightward-shift of G.

If x and y are strings, we will use x ◦ y to denote the concatenation xy. Also, if
an example created by a concatenation of strings has length less than n, then we will
implicitly pad with 0’s, say on the right. Finally, let LSB[x] denote the rightmost bit
of string x.

We now review the GGM random function construction. Let G be a CSB gener-
ator that on input s ∈ {0, 1}k produces a 2k-bit output. Goldreich, Goldwasser, and
Micali define the function fs : {0, 1}k → {0, 1}k on input i = i1 . . . ik to be:

fs(i) = Gi1···ik
(s) = Gik

(Gik−1
(. . . Gi1(s) . . .)).

The function fs can be viewed as a complete binary tree of depth k. The root is
the seed s, and on input i, the output fs(i) is the ith leaf in the tree if i is viewed
as a binary number between 0 and 2k. Though this fact will not be needed for
our purposes, it is proved that the collection Fk = {fs}s∈{0,1}k is a “poly-random”

collection of functions over {0, 1}k. Essentially, this means that no polynomial-time
algorithm can distinguish between a function chosen randomly from Fk and a function
chosen randomly from the class of all functions from {0, 1}k to {0, 1}k.

We will use the basic form of the GGM construction as a starting point to create a
concept class that separates the distribution-free and mistake-bound learning models.



SEPARATING LEARNING MODELS 5

   

0

0

1

1

LSB

G1(s )

G
1
(G

1
(G

0
(s)))

fs(i)

Fig. 1. Darkened regions are information given with 〈xi
s, cs(xi

s)〉 for i = 0101.

3. A concept class to separate the learning models. We now create a
concept class over {0, 1}n that is learnable in the distribution-free model but not in
the mistake-bound model if one-way functions exist. We first give the formal definition
of the class, and follow this by a more informal explanation and example. Given a
CSB generator G, we will fix k, the size of seed s, to equal b√nc.

Definition 2. Let CG = {cs}s∈{0,1}k where the concepts cs are defined as follows:

cs = {xi
s : i ∈ {0, 1}k and LSB[Gi1···ik

(s)] = 1},

where for each i = i1 · · · ik,

xi
s = i ◦ G′

i1
(s) ◦ G′

i2
(Gi1 (s)) ◦ G′

i3
(Gi1i2(s)) ◦ . . . ◦ G′

ik
(Gi1···ik−1

(s)).

Now the informal description. There is one concept cs for each s ∈ {0, 1}k. For
each i such that LSB[fs(i)] = 1, there is an associated positive example xi

s for cs, so
there are about 2b

√
nc−1 positive examples for cs. We can think of the labeled example

〈xi
s, cs(x

i
s)〉 as the pair (i, LSB[fs(i)]) together with the following extra information:

for each bit ij equal to zero (running left to right along i), we include the right half of
G(Gi1···ij−1

(s)). For example, if k = 4 and i = 0101, then we would have (see Figure
1):

xi
s = 0101 ◦ G1(s) ◦ λ ◦ G1(G1(G0(s))) ◦ λ

= 0101 ◦ G1(s) ◦ G011(s),

cs(x
i
s) = LSB[G0101(s)].

We will think of the index i as both a bit string and a binary number between 0 and
2k.

Notice that negative examples of cs come in two forms: some are examples xi
s

for which LSB[fs(i)] = 0 and some are just bit strings from {0, 1}n that are not of



6 A. L. BLUM

the form xi
s for any i. We will call the examples xi

s the “good examples” of cs; so
the positive examples of cs are the good examples xi

s such that LSB[fs(i)] = 1. The
examples xi

s will be shown to have the property of the strings σi mentioned in the
introduction.

For convenience, let us define the following additional notation.

(i) Let zi
s be the (correctly) labeled good example 〈xi

s, cs(x
i
s)〉.

(ii) Let zi
s be the incorrectly labeled good example 〈xi

s, 1 − cs(x
i
s)〉.

(iii) For i1 . . . id ∈ {0, 1}d, let:
Gi1···id(s) = G′

i1
(s) ◦ G′

i2
(Gi1(s)) ◦ . . . ◦ G′

id
(Gi1···id−1

(s)).

So, example xi
s is equal to i ◦ Gi1···ik(s).

We now demonstrate an algorithm that on input xi
s and j > i computes zj

s in
time O(nTk) where Tk is the time to compute G on a k-bit input. The essential idea
of the algorithm is that contained in example xi

s are ancestors in the full binary tree
of each piece of information contained in zj

s. The reason we want to compute the
entire zj

s and not just the classification cs(x
j
s) is that the learning algorithm, given

an example x that purports to be some xj
s (because its first k bits are j), first will

compute xj
s to verify that x really is the “good example,” and then predict positive

exactly when both x = xj
s and the classification of xj

s is 1.

Algorithm Compute-Forward

Given: xi
s and j > i.

1. Write i = i1 · · · ik and j = j1 · · · jk. Let r be the least index such that ir 6= jr.
Since j > i, we have ir = 0 and jr = 1.

2. Extract from xi
s the portions:

u = G′
i1

(s) ◦ G′
i2

(Gi1 (s)) ◦ . . . ◦ G′
ir−1

(Gi1···ir−2
(s)) = Gi1···ir−1(s).

v = G′
ir

(Gi1···ir−1
(s)) = Gj1···jr

(s).

(Notice that G′
jr

(Gj1···jr−1
(s)) = λ.)

3. If r = k, output: 〈j ◦ u ◦ λ, LSB[v]〉.
Otherwise, output: 〈j ◦ u ◦ λ ◦ Gjr+1···jk(v), LSB[Gjr+1···jk

(v)]〉.

Algorithm Compute-Forward produces zj
s as output for the following reason. By

the definition of r, we know Gi1···ir−1(s) = Gj1 ...jr−1(s), so u ◦ λ = Gj1...jr−1(s) ◦
G′

jr
(Gj1···jr−1

(s)) = Gj1...jr (s). Since v = Gj1···jr
(s), we have:

u ◦ λ ◦ Gjr+1···jk(v) = Gj1···jr (s) ◦ Gjr+1···jk(Gj1···jr
(s)) = Gj1···jk(s),

and LSB[Gjr+1···jk
(v)] = LSB[Gj1···jk

(s)] = cs(x
j
s). In addition, algorithm Compute-

Forward uses at worst O(k2) computations of G.
Theorem 3.1. Concept class CG is learnable in the distribution-free model.

Proof. Algorithm Learn-CG works as follows. Collect m ≥ 1
ε

ln 1
δ

labeled exam-
ples. If all examples are negative, hypothesize the empty concept. Otherwise, we
know each positive example is a “good example”, so let i be the index (first k bits)
of the positive example xi

s of least index seen so far. Produce the hypothesis:
“On example x, let j be the first k bits of x. If j < i predict 0. If
j > i, use algorithm Compute-Forward to produce labeled example
〈xj

s, cs(x
j
s)〉. If x = xj

s then predict cs(x
j
s); otherwise predict 0.”



SEPARATING LEARNING MODELS 7

One simple way to see that Learn-CG learns in the distribution-free model is just
to notice that it is an “Occam Algorithm” in the sense of Blumer et al. [8] since for
any size sample, the hypothesis produced has size O(n) and is consistent with all the
data seen. Alternatively, one can use a direct argument of the type used for learning
a subinterval [0, a] of the interval [0, 1]. Let l be the least index such that the set
of examples Sl = {zj

s : j ≤ l and cs(x
j
s) = 1} has probability at least ε. Algorithm

Learn-CG fails to learn with error less than ε exactly when it sees no example from
Sl. So, the probability Learn-CG fails is at most (1 − ε)m which is less than δ for
m ≥ 1

ε
ln 1

δ
.

Theorem 3.2. Concept class CG cannot be learned in the mistake-bound model

if G is a CSB generator.

In order to prove Theorem 3.2, we show that the sequence of examples xi
s is

difficult to compute in the reverse direction, as described in the following lemma and
corollary.

Lemma 3.3. For any PPT algorithm A and polynomial Q, for sufficiently large

k, for all i ∈ {0, 1}k,

|Pk(A, zi
s) − Pk(A, zi

s)| <
1

Q(k)
.

That is, for any algorithm A and index i, for random seeds s, algorithm A cannot
distinguish between a correctly labeled xi

s and an incorrectly labeled one. Using
algorithm Compute-Forward, on input xi

s one can easily compute any other labeled
example zj

s for j > i. So, Lemma 3.3 could equivalently be written as:
Corollary 3.4. For any PPT algorithm A and polynomial Q, for sufficiently

large k, for all i ∈ {0, 1}k,

|Pk(AO, zi
s) − Pk(AO, zi

s)| <
1

Q(k)
,

where O is an oracle that on any input j > i outputs labeled example zj
s.

Lemma 3.3 implies, as shown below, that any learning algorithm will be fooled in
the mistake-bound model by an adversary that presents the examples xi

s in reverse
order. In fact, Lemma 3.3 is stronger than we need because it implies that any
algorithm will fail not just on some cs ∈ CG but in fact on almost all of the concepts
cs.

Proof of Theorem 3.2 (assuming Lemma 3.3). Suppose there exists a learning algo-
rithm L and polynomial P such that for all cs ∈ CG over {0, 1}n, algorithm L makes
at most P (n) mistakes. Consider an adversary that presents the good examples in

reverse order: x2k

s , x2k−1
s , . . .. Algorithm L makes a mistake on at most one fourth

of the first 4P (n) examples presented. If L is deterministic, this implies there exists
some index t (2k − 4P (n) ≤ t ≤ 2k) such that over all cs ∈ CG, algorithm L makes an
error an at most one fourth of the examples xt

s. If L is randomized, we still have that
for some t, the probability over the choice of s and the coin tosses of L that L makes
a mistake on xt

s is at most 1/4. So, we can use L in an algorithm A that contradicts
Corollary 3.4: on input 〈xt

s, b〉 we use the oracle (or algorithm Compute-Forward) to
simulate the adversary presenting examples to L and then output 1 if L’s prediction
of cs(x

t
s) equals b. If b was the correct classification, there is at least a 3/4 probability

that L will output 1, but there is only a 1/4 probability if b was incorrect.
We now prove Lemma 3.3, showing that given only example xi

s it is difficult
to calculate the classification cs(x

i
s). The basic idea of the proof is a version of a



8 A. L. BLUM

standard cryptographic technique described by Yao [26]. Roughly, if an algorithm
can distinguish strings zi

s from strings zi
s, then we will slowly substitute bits in those

strings with random bits and watch the performance of the algorithm degrade. At
some point before the strings have become completely random the performance must
degrade significantly, and we will focus on that location to break the generator.

Proof of Lemma 3.3. Suppose to the contrary there is a PPT algorithm A and
polynomial Q such that for infinitely many k, for some t(k) ∈ {0, 1}k, we have

|Pk(A, z
t(k)
s ) − Pk(A, z

t(k)
s )| ≥ 1

Q(k) . Without loss of generality, let us assume that A

has {0, 1} output. We will use A to create an algorithm B that breaks generator G.
In particular, for infinitely many k, we will have |Pk(B, G(s))−P2k(B, s)| ≥ 1

2kQ(k) .
2

Let S′
0 = {0, 1}k and S′

1 = {λ} (to correspond to the notation for G′
0 and G′

1) and
let t = t(k) = t1 . . . tk. Let p1,k = Pk(A, zt

s) and p1,k = Pk(A, zt
s), and for 1 < d ≤ k,

define:

pd,k = Pr[A〈t ◦ r1 ◦ . . . ◦ rd−1 ◦ Gtd···tk(s), b〉 = 1 | r1∈R
S′

t1
, . . . , rd−1∈R

S′
td−1

,

s∈
R
{0, 1}k]

pd,k = Pr[A〈t ◦ r1 ◦ . . . ◦ rd−1 ◦ Gtd···tk(s), b〉 = 1 | r1∈R
S′

t1
, . . . , rd−1∈R

S′
td−1

,

s∈
R
{0, 1}k]

where b = LSB[Gtd···tk
(s)] and b = 1 − LSB[Gtd···tk

(s)].

So, for d > 1, pd,k is the probability that A outputs 1 on input zt
s where the first

d − 1 “pieces” of xt
s have been replaced by random strings of the appropriate length

and the application of generator G begins at depth d in the full binary tree.
We have by assumption that |p1,k − p1,k| ≥ 1/Q(k) for infinitely many k. We

now consider two cases. The first is that |pk,k − pk,k| ≥ 1/(kQ(k)) for infinitely many
k. The second is that for infinitely many k we have both |p1,k − p1,k| ≥ 1/Q(k) and
|pk,k − pk,k| < 1/(kQ(k)). In the first case, the following algorithm B will break
generator G (the analysis follows the description of the algorithm):

Algorithm B

1. On input y ∈ {0, 1}2k, let y0 be the left half of y and y1 be the right half of
y. Let y′

0 = y1 and y′
1 = λ.

2. For i ∈ {1, . . . , k − 1} choose ri∈R
S′

ti
.

3. Flip a coin:
(i) If heads, output: A〈t ◦ r1 ◦ . . . ◦ rk−1 ◦ y′

tk
, LSB[ytk

]〉.
(ii) If tails, output: 1 − A〈t ◦ r1 ◦ . . . ◦ rk−1 ◦ y′

tk
, 1 − LSB[ytk

]〉.

If the input y to B equals G(s) for random s, then the probability B outputs 1 is:
1
2pk,k + 1

2 (1− pk,k) = 1
2 + 1

2 (pk,k − pk,k). If the input y to B is randomly chosen from

{0, 1}2k, however, then we claim the probability B outputs 1 is just 1
2 . The reason is

that since ytk
and y′

tk
are disjoint pieces of y, B outputs with equal probability either

2 Algorithm B will be non-uniform, in part because we have no guarantee that the index t(k)
is easy to compute given k (to contradict Lemma 3.3 just requires there exist some t(k)). One
could modify (and make less “clean”) the statement of Lemma 3.3 so that this problem no longer
occurs and still separate the learning models, since our adversary chooses the examples in an easy
to compute ordering.



SEPARATING LEARNING MODELS 9

A〈t ◦ r, b〉 or 1 − A〈t ◦ r, b〉 for independent, random r and b. So, for infinitely many
k we have |Pk(B, G(s)) − P2k(B, s)| ≥ |12 (pk,k − pk,k)| ≥ 1

2kQ(k) , breaking G.

The second case, recall, is that for infinitely many k we have |p1,k − p1,k| ≥ 1
Q(k)

and |pk,k − pk,k| < 1
kQ(k) . If k is such that these two inequalities hold, then either

|pd,k−pd+1,k| ≥ 1
(2k−1)Q(k) or |pd,k−pd+1,k| ≥ 1

(2k−1)Q(k) for some d ∈ {1, 2, . . . , k−1};
this just follows from the fact that |p1,k − p1,k| ≤ |p1,k − p2,k|+ . . . + |pk−1,k − pk,k|+
|pk,k − pk,k| + |pk,k − pk−1,k| + . . . + |p2,k − p1,k|. So, this second case implies that
either:

(i) for infinitely many k there exists d = d(k) ∈ {1, . . . , k− 1} such that |pd,k −
pd+1,k| > 1

2kQ(k) , or

(ii) for infinitely many k there exists d = d(k) ∈ {1, . . . , k− 1} such that |pd,k −
pd+1,k| > 1

2kQ(k) .

Let us assume that the first situation occurs; the second situation is completely
analogous. The algorithm B′ to break generator G is then as follows.

Algorithm B′

1. On input y ∈ {0, 1}2k, let y0 be the left half of y and y1 be the right half of
y. Let y′

0 = y1 and y′
1 = λ. Let d = d(k) as above.

2. For i ∈ {1, . . . , d − 1} choose ri∈R
S′

ti
.

3. Output:
A〈t ◦ r1 ◦ r2 ◦ . . . ◦ rd−1 ◦ y′

td
◦ Gtd+1···tk(ytd

), LSB[Gtd+1···tk
(ytd

)]〉.

If the input y to B′ equals G(s) for random s, then y′
td
◦Gtd+1···tk(ytd

) = Gtd···tk(s)
and Gtd+1···tk

(ytd
) = Gtd···tk

(s). So, the probability B′ outputs 1 is pd,k. On the other
hand, if y∈

R
{0, 1}2k, then ytd

and y′
td

are completely independently chosen strings,
so the probability B′ outputs 1 is pd+1,k. By the choice of d, algorithm B′ breaks the
generator G on infinitely many k, a contradiction.

So by Theorems 3.1 and 3.2, concept class CG is learnable in the distribution-free
model but not in the absolute mistake-bound model if G is a CSB generator, and such
G exist if one-way functions exist.

4. Allowing membership queries. It turns out that a mistake-bound model
learning algorithm can do no better on this concept class even if it is allowed to make
membership queries. The reason is that in order for membership queries to help, the
algorithm at some point must produce an entire good example xi

s it has not yet seen
to query. (Otherwise the membership query oracle could be replaced by a machine
that always answers “negative” to any query of an example not yet seen.) As we show
below, this would allow one to break G.

Theorem 4.1. Concept class CG cannot be learned in the mistake-bound model

with membership queries if G is a CSB generator.

Proof. Suppose for contradiction there is a learning algorithm L and polynomial
P such that for all cs ∈ CG over {0, 1}n, algorithm L makes at most P (n) mistakes plus

queries. The adversary will present the good examples in the order: x2k

s , x2k−1
s , . . .,

and let us consider the behavior of L on the first 5P (n) examples. Clearly, L makes a
mistake on at most 1/5 of the examples and makes at most P (n) membership queries.

Let us say that a membership query is a “good query” if it is a query of a good
example L has not yet seen. Also, let us define the algorithm dequery(L) to be the
algorithm for the mistake-bound model (no queries) that runs L, and each time L



10 A. L. BLUM

attempts to make a membership query on an example it has not yet seen, returns to
L the answer “no.”

Suppose first that the probability that L makes no good queries during the first
5P (n) examples is at least 4/5 (probability taken over the random choice of cs ∈ CG

and the coin tosses of L). This would imply that for some index t, over random s,
the algorithm dequery(L) has a probability at least 4/5− 1/5 = 3/5 of producing the
correct classification of example xt

s. This contradicts Corollary 3.4.
We may now assume that L makes a good query at some point in the first 5P (n)

examples with probability at least 1/5 (over random s). Thus, for some t ≥ 2k−5P (n),
the probability algorithm L makes its first good query after seeing xt

s but before seeing
xt−1

s is at least 1
25P (n) . Let t = t1 . . . tk and let Q(n) = 25[P (n)]2.

Note that Gt1···tk
(s) is efficiently computable from any good example xi

s for i < t.
So, we can use L in an algorithm A that on input xt

s has a probability at least 1
Q(n)

of producing Gt1···tk
(s) as output, as follows. Algorithm A uses xt

s and Compute-

Forward to run L on inputs x2k

s , x2k−1
s , . . . , xt

s, returning “no” as an answer to each
membership query made. It then guesses which membership query made after xt

s is
the good query (in case L makes several queries after xt

s; the number of such queries
is at most 1

P (n) ). A then uses that query to produce a hypothesis for Gt1···tk
(s).

In analogy to definitions in the proof of Lemma 3.3, let qd,k be the probability
that A outputs Gtd···tk

(s) on input t◦r1 ◦ . . .◦rd−1 ◦Gtd···tk(s), where ri is a randomly
chosen string of length k if ti = 0 and ri = λ if ti = 1. We are given that q1,k ≥ 1

Q(k) .

However, we know that qk,k must be small for the following reason. Quantity qk,k is
the probability that A outputs Gtk

(s) on input t ◦ r ◦ G′
tk

(s), where r is a random
string of the appropriate length. If A does so with probability greater than 1

kQ(k) ,

then the algorithm B to break G is as follows: on input y (let y0 be the left half and
y1 be the right half), pick a random r and feed to A input t◦ r ◦ y1 if tk = 0 or t◦ r ◦λ
if tk = 1, and output 1 if A outputs ytk

. If y = G(s) for random s, then B outputs
1 with probability at least 1

kQ(k) , but if y is a random string then B outputs 1 with

probability at most (1/2)k since ytk
is a random string of length k and independent

of the input to A. So, B breaks G.
Thus, there must exist some value d such that |qd,k − qd+1,k| > 1

kQ(k) . We can

now break G with a variant of algorithm B′ of the proof of Lemma 3.3. On input
y ∈ {0, 1}2k the algorithm outputs 1 if A(t ◦ r1 ◦ . . . ◦ rd−1 ◦ y′

td
◦ Gtd+1···tk(ytd

)) =
Gtd+1···tk

(ytd
). So, if y = G(s) for random s, it outputs 1 with probability qd,k, and if

y∈
R
{0, 1}2k, then it outputs 1 with probability qd+1,k, and thus breaks G.

5. Conclusion. We have shown how to construct a concept class over {0, 1}n

that is learnable in the distribution-free model but not in the mistake-bound model
if cryptographically secure bit generators (or equivalently one-way functions) exist.
In fact, the assumption of one-way functions gives us something stronger. Not only
is the concept class CG hard to learn in the mistake-bound model in the sense that
for any learning algorithm there is some c ∈ CG hard to learn, but in fact we have
that for any learning algorithm, nearly all c ∈ CG are hard to learn. The fraction of
concepts which an algorithm can learn is less than any polynomial fraction 1

Q(n) (for

sufficiently large n). This fact leads one to ask the question: is it possible to separate
the two models using a weaker assumption? Some assumption is apparently necessary
since if computational considerations are ignored, any concept class learnable in one
model is learnable in the other.

The concept class CG remains difficult to learn in the mistake-bound model even



SEPARATING LEARNING MODELS 11

if the learner is allowed membership queries. This lies in contrast to the class of DFAs
which are learnable in the mistake-bound (equivalence query) model with membership
queries [2] but not in the distribution-free model [19]. Thus, neither model is strictly
easier than the other. Recently, membership queries have been shown not to help in
learning (for a reason similar to that described here) for the important class of DNF
formulas [4].

The concept class constructed here is very non-natural. To date, every “natural”
concept class known to be polynomial-time learnable in the distribution-free model is
also known to be polynomial-time learnable in the mistake-bound model. However,
for some of these classes the known mistake-bound algorithm is qualitatively more
difficult than, and sometimes followed quite a bit later than, the distribution-free al-
gorithm. One such case is the class of decision lists (distribution-free algorithm by
Rivest [23], mistake-bound algorithm by Littlestone (personal communication) and
Helmbold, Sloan, and Warmuth [14]). With the addition of membership queries to
both models, another case is that of read-twice DNF (distribution-free with queries
algorithm by Hancock [10], and a more complicated mistake-bound with queries algo-
rithm by Aizenstein and Pitt [1]). An interesting open problem is whether there is any
natural class that would be a good candidate for being learnable in the distribution-
free model but not the mistake-bound model.

I would like to thank Shafi Goldwasser, Silvio Micali, Ron Rivest, and Phil Rog-
away for helpful discussions, and Rob Schapire for suggesting the simple “Occamness”
argument for the proof of Theorem 3.1.

REFERENCES

[1] H. Aizenstein and L. Pitt, Exact learning of read-twice DNF formulas, Proceedings of the
32nd Annual Symposium on Foundations of Computer Science, pp. 170–179, 1991.

[2] D. Angluin, Learning regular sets from queries and counterexamples, Information and Com-
putation, 75 (1987), pp. 87–106.

[3] Queries and concept learning, Machine Learning, 2 (1988), pp. 319–342.
[4] D. Angluin and M. Kharitonov, When won’t membership queries help, Proceedings of the

Twenty-Third Annual ACM Symposium on Theory of Computing, pp. 444–454, 1991.
[5] A. Blum, Separating distribution-free and mistake-bound learning models over the Boolean

domain, Proceedings of the 31st Annual Symposium on Foundations of Computer Science,
pp. 211–218, 1990.

[6] L. Blum, M. Blum, and M. Shub, A simple unpredictable pseudo-random number generator,
SIAM J. Computing, 15 (1986), pp. 364–383.

[7] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random

bits, SIAM J. Computing, 13 (1984), pp. 850–863.
[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Occam’s razor, Informa-

tion Processing Letters, 24 (1987), pp. 377–380.
[9] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions, Journal

of the ACM, 33 (1986), pp. 792–807.
[10] T. Hancock, Learning 2µ DNF formulas and kµ decision trees, Proceedings of the Fourth

Annual Workshop on Computational Learning Theory, pp. 199–209, 1991.
[11] J. Hastad, Pseudo-random generators under uniform assumptions, Proceedings of the Twenty-

Second Annual ACM Symposium on Theory of Computing, 1990.
[12] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth, Equivalence of models

for polynomial learnability, Proceedings of the 1988 Workshop on Computational Learning
Theory, pp. 42–55, 1988.

[13] D. Haussler, N. Littlestone, and M. K. Warmuth, Predicting {0, 1}-functions on randomly

drawn points, Proceedings of the Twenty-Ninth Annual Symposium on Foundations of
Computer Science, pp. 100–109, 1988.

[14] D. Helmbold, R. Sloan, and M. K. Warmuth, Learning nested differences of intersection-

closed concept classes, Proceedings of the Second Annual Workshop on Computational



12 A. L. BLUM

Learning Theory, pp. 41–56, 1989.
[15] R. Impagliazzo, L. A. Levin, and M. Luby, Pseudo-random generation from one-way func-

tions, Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing,
pp. 12–24, 1989.

[16] M. Kearns, The Computational Complexity of Machine Learning. PhD thesis, Harvard Uni-
versity Center for Research in Computing Technology, Technical Report TR-13-89, 1989.

[17] M. Kearns, M. Li, L. Pitt, and L. Valiant, On the learnability of boolean formulae, Proceed-
ings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 285–295,
1987.

[18] Recent results on boolean concept learning, Proceedings of the Fourth International Work-
shop on Machine Learning, pp. 337–352, 1987.

[19] M. Kearns and L. G. Valiant, Cryptographic limitations on learning boolean formulae and

finite automata, Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing, pp. 433–444, 1989.

[20] L. A. Levin, One-way functions and pseudorandom generators, Proceedings of the Seventeenth
ACM Symposium on Theory of Computing, pp. 363–365, 1985.

[21] N. Littlestone, Learning when irrelevant attributes abound: A new linear-threshold algo-

rithm, Machine Learning, 2 (1988), pp. 285–318.
[22] W. Maass and G. Turán, On the complexity of learning from counterexamples, Proceedings

of the Thirtieth Annual Symposium on Foundations of Computer Science, pp. 262–267,
1989.

[23] R. L. Rivest, Learning decision lists, Machine Learning, 2 (1987), pp. 229–246.
[24] R. E. Schapire, The strength of weak learnability, Proceedings of the Thirtieth Annual Sym-

posium on Foundations of Computer Science, 1989.
[25] L. G. Valiant, A theory of the learnable, Communications of the ACM, 27 (1984), pp. 1134–

1142.
[26] A. C. Yao, Theory and application of trapdoor functions, Proceedings of the 23rd IEEE Sym-

posium on Foundations of Computer Science, pp. 80–91, 1982.


