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Abstract

Combinatorial Auctions are a central problem in Algorithmic Mechanism Design: pricing
and allocating goods to buyers with complex preferences in order to maximize some desired
objective (e.g., social welfare, revenue, or profit). The problem has been well-studied in the
case of limited supply (one copy of each item), and in the case of digital goods (the seller can
produce additional copies at no cost). Yet in the case of resources—oil, labor, computing cycles,
etc.—neither of these abstractions is just right: additional supplies of these resources can be
found, but at increasing difficulty (marginal cost) as resources are depleted.

In this work, we initiate the study of the algorithmic mechanism design problem of combi-
natorial pricing under increasing marginal cost. The goal is to sell these goods to buyers with
unknown and arbitrary combinatorial valuation functions to maximize either the social welfare,
or the seller’s profit; specifically we focus on the setting of posted item prices with buyers ar-
riving online. We give algorithms that achieve constant factor approximations for a class of
natural cost functions—linear, low-degree polynomial, logarithmic—and that give logarithmic
approximations for arbitrary increasing marginal cost functions (along with a necessary additive
loss). We show that these bounds are essentially best possible for these settings.
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1 Introduction

Combinatorial Auctions are a central problem in Algorithmic Mechanism Design: pricing and
allocating goods to buyers with complex preferences in order to maximize some desired objective
(e.g., social welfare, revenue, or profit). This problem is typically studied in one of two extreme
cases – the case of limited supply (one copy of each item) or the case of unlimited supply (the
seller can produce additional copies at no cost). For the case of limited supply, there are strong
negative results (see Blumrosen and Nisan (2007) and the references therein) unless one makes
additional assumptions on the buyers’ valuations (e.g., submodularity (Dobzinski et al.; Lehmann
et al., 2006; Dobzinski, 2007; Chakraborty et al., 2009)). In contrast, for unlimited supply, which is
characteristic of digital goods, maximizing social welfare is trivial by giving all the items away for
free, and for revenue maximization, good bounds can be achieved for general buyers (Briest et al.,
2008; Balcan et al., 2008). However, in the case of resources—whether oil or computing cycles or
food or attention span—the unlimited-supply case is too optimistic and the limited-supply case too
pessimistic. More often than not, additional sources can be found, but at higher cost. Indeed, the
classical market equilibrium in economic theory assumes that as prices rise, supply increases while
demand decreases (giving a unique price which clears the market). Such a supply curve corresponds
to a cost of obtaining goods that increases with the number of items desired.

In this work, we initiate the study of this setting where additional resources can be found, but at
increasing marginal cost, for the algorithmic mechanism design problem of combinatorial pricing.1

That is, a seller has n goods, and for each good i there is a non-decreasing marginal cost function
ci(), capturing the fact that additional units of this good can be obtained, but at an increasing
difficulty to the seller per unit. We specifically focus on the most challenging setting of posted
item prices2 in the face of an unknown series of buyers, with unknown and arbitrary combinatorial
valuation functions, who arrive online. That is, the seller (e.g., a supermarket) must assign prices
to each of n goods, then a buyer arrives with some arbitrary combinatorial valuation function and
purchases the bundle maximizing her own quasilinear utility (valuation minus price). After the
buyer has made her purchase, the seller may adjust prices, then the next buyer arrives, and so on.
In this setting, the seller cannot ask a buyer to submit her utility function, cannot run VCG, and
cannot charge an admission fee to enter the store. We consider two natural goals – maximizing
social welfare (the sum of buyers’ valuations on bundles purchased, minus the costs incurred by
the seller for obtaining these items)3 and maximizing profit (the total amount paid by the buyers,
minus the costs incurred by the seller). Our main result is that using appropriate algorithms we
can in fact perform nearly as well as in the much easier setting of digital goods for a wide range of
cost curves.

A second scenario where our results are applicable is in the context of network routing with con-
gestion. Specifically, we would like to maximize the sum of valuations of routed connections (each
user has some pair of terminals and a valuation on receiving a connection) minus the congestion
cost of routing them. The congestion cost can reflect either the energy required to support the

1One could also study decreasing marginal costs, though we point out that modeling decreasing marginal costs in
a non-Bayesian adversarial setting poses difficulties. For example, there are situations where any algorithm can make
positive profit only by initially going into deficit, at which point the adversary could send in no more buyers.

2By virtue of posted pricing, our mechanisms are inherently incentive compatible.
3Social welfare is a natural objective if we view the seller as a resource allocator within a company, and buyers as

various units in the company needing resources.
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traffic on the network or the cost of additional infrastructure needed to maintain the quality of ser-
vice under increased load. Andrews et al. (2010) indicate that energy curves for processors exhibit
dis-economies of scale i.e. energy expenditure is super-linear as a function of processor speed. Such
a scenario is captured by our model of increasing marginal cost, which for network routing would
mean increasing marginal congestion costs.

We will sometimes refer to marginal cost to the seller of the kth copy of an item as the production
cost of the kth copy of that item.

1.1 Our Results and Techniques

We focus on two goals: maximizing social welfare, and maximizing profit. Social welfare is the total
valuation of the buyers for their bundles purchased, minus the cost to the seller of all items sold.
That is, it is the total utility of all players including the seller. Note that because the production
costs are not flat, even to maximize social welfare, one cannot simply sell items at their production
costs; one must sell at a price higher than the production cost4. This is in order to ensure that
items reach the buyers who want them (approximately) most. The second goal is to maximize
profit, i.e., the sum of prices charged for items sold minus their costs to the seller.

For a wide range of reasonable cost functions (linear, low-degree polynomial, logarithmic), we
present a pricing scheme that achieves a social welfare within a constant factor of the optimal
social welfare allocation minus a necessary additive loss. This holds for buyers with arbitrary
combinatorial valuation functions. Furthermore, the algorithm is quite ‘natural’ and reasonable:
we price the kth copy of any good at the production cost of the 2kth copy5. This pricing scheme,
that we call twice-the-index, appears in Section 3.

The Twice-the-index pricing scheme however fails to give good guarantees for all increasing cost
functions. For instance, for the 0-∞ case, where the first few copies are available at zero cost and
thereafter the copies have an extremely high production cost, buyer instances can be easily be
created where twice-the-index fails to give any any ‘reasonable’ guarantee (Appendix A.2). Bartal
et al. (2003) propose a pricing scheme for the 0-∞ setting which achieves a logarithmic approxi-
mation to the social welfare in case the number of copies available at zero cost are logarithmically
many. We build on their idea and apply it to an arbitrary increasing cost curve by breaking up the
curve into contiguous chunks, each containing logarithmically many copies, and apply their pricing
scheme separately for each chunk. This pricing scheme, presented in Section 4, gives roughly a log-
arithmic approximation to the optimal social welfare minus the production cost of logarithmically
many initial copies.

While the Twice-the-index pricing scheme gives constant approximation guarantees for ‘nice’ curves,
the pricing scheme in Section 4 gives a logarithmic approximation for arbitrary increasing curves.
We would ideally want a single algorithm that can give us constant approximation guarantees for
‘nice’ curves and logarithmic guarantees for arbitrary increasing curves. We achieve this for the
case of convex increasing curves. In Section 5, we present a smoothing pricing scheme that attains
a constant approximation to the optimal social welfare for polynomial curves and a logarithmic
approximation for arbitrary convex curves (plus some additive loss in both cases).

Interestingly, in order to prove the approximation guarantee for all of the presented social welfare

4See Appendix A.1.1 for an example.
5For illustrative examples showing why some closely related algorithms fail, see Appendix A.
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maximizing schemes, we use a crucial result which we refer to as the Structural Lemma. This result
is stated and proved in Section 2.1. The result reduces the problem of proving the social welfare
guarantee of a pricing scheme for buyers with arbitrary valuations to a case of proving that for every
item, the profit generated through sales of copies of the item is comparable to the area between
the production curve of the item and a line parallel to x-axis and at a height equal to the prices
of the lowest priced unsold copy of the item. Hence the Structural Lemma simplifies the analysis
considerably since it allows the problem to be seen per item even though the original problem is
combinatorial.

Finally, in Section 6, we change our objective to maximizing the profit, i.e., the sum of prices of
goods sold minus the production cost of the goods. Here we give a randomized pricing scheme
that takes as input any social welfare maximizing scheme (with approximation factor, say ρ) and
a single-buyer profit maximizing pricing (with approximation factor say µ), and combines them to
get a profit maximization pricing scheme that achieve a (ρ + µ) approximation to optimal profit
for any sequence of buyers. In particular, we use the single-buyer profit maximization algorithm of
Balcan et al. (2008) and combine it with the social-welfare pricing schemes mentioned above to get
a logarithmic approximation to the optimal profit for arbitrary increasing curves. Our approach for
combining a social welfare maximization pricing scheme with a single-buyer profit maximization
algorithm is directly inspired by and builds upon a similar result presented in Awerbuch et al.
(2003). In fact, it extends their results to a more general setting with production costs and arbitrary
valuations.

1.2 Related work

There is a huge body of literature on combinatorial auctions and pricing algorithms: we refer the
reader to (Blumrosen and Nisan, 2007; Hartline and Karlin, 2007) and the references therein—in
particular, note (Bartal et al., 2003; Lehmann et al., 2006; Dobzinski et al.; Dobzinski, 2007; Briest
et al., 2005; Lavi and Swamy, 2005). The setting of combinatorial auctions has been considered both
in Bayesian (stochastic) settings, where the buyers’ valuations are assumed to come from a known
prior distribution, and non-Bayesian (adversarial) settings. Our work focuses on the non-Bayesian
or adversarial setting.

The algorithms of Briest et al. (2005) give truthful mechanisms that achieve constant approxi-
mations to social welfare for Ω(log n) copies of each item (see also (Archer et al., 2004)) in the
offline setting. For the online setting, Bartal et al. (2003) give posted-price welfare-maximizing
algorithms for combinatorial auctions in the limited supply setting—the approximation guarantees
they give are logarithmic (when there are Ω(log n) copies of each item) or worse (when there are
fewer copies); their results are (nearly) tight for the online limited-supply setting. The smoothing
algorithm presented in Section 5 generalizes the results of Bartal et al. (2003) to arbitrary increasing
cost curves and not just 0-∞ costs (i.e. the limited supply case).

The work of Awerbuch et al. (2003) shows how to convert deterministic (or some special kind of
randomized) online mechanisms for allocation problems into (randomized) posted-pricing schemes
that achieve (ρ + log Vmax)-fraction of the optimal profit possible, where the online algorithm is
ρ-competitive for the allocation problem and Vmax is the maximum valuation of any agent over the
set of items. We extend their analysis to convert our social welfare maximizing algorithms to profit
maximizing algorithms. The details of this conversion are given in Section 6.
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2 Model, Notation, and Definitions

We consider the following setting. A seller is selling a set I = {1, . . . , n} of n items to a sequence
B of m buyers who arrive one at a time. The seller can obtain (or produce) additional copies
of each item but at increasing (or at least non-decreasing) production cost; specifically, let ci(k)
denote the production cost to the seller for the kth copy of item i. For each item i, let Ci(k) be
the cumulative cost for the first k copies—i.e., Ci(k) =

∑
k′≤k ci(k

′). Let cinvi (p) be the number of
copies of item i available before the production cost exceeds p; in case ci(·) is invertible, it follows
that cinvi (p) = c−1

i (p).

Before each buyer arrives, the seller may mark up the costs to determine a sales price πi for each
item i. Every buyer b has some (unknown to the seller) valuation function vb : 2I → R over
possible bundles of items (we only require that vb(φ) = 0 i.e. value on the empty bundle is zero),
and purchases the utility-maximizing bundle for herself at the current prices. That is, buyer b
purchases the set S maximizing vb(S)−

∑
i∈S πi. After a buyer finishes purchasing her desired set,

the seller may then readjust prices, and then the next buyer arrives, and so on.

For any particular sequence of buyers, let opt be the allocation that maximizes the social welfare.
Clearly, the social welfare achieved under opt, denoted by W (opt), is an upper bound on both the
maximum social welfare and maximum profit achievable by any online algorithm.

For any algorithm alg, W (alg) shall denote the social welfare attained through the algorithm. The
algorithm shall determine a pricing scheme for the seller and πi(k) shall denote the sales price
charged for the kth copy of item i ∈ I. While this could in principle depend on other items sold,
for all our algorithms it will depend only on k and the cost-curve for the item. xi shall denote the
total number of copies of item i sold by the algorithm, and P fi shall denote the price of the first

unsold copy of item i—i.e., P fi = πi(xi + 1).

We shall denote the total production cost suffered by the algorithm by C(alg) and and the revenue
made by R(alg). profiti shall denote the profit made by the algorithm from the sales of item i. The
total profit made by the algorithm is

∑
i∈I profiti = R(alg)− C(alg).

Since xi are the total number of copies sold by the algorithm alg for item i, therefore, C(alg) =∑
i∈I
∑xi

k=1 ci(k), R(alg) =
∑

i∈I
∑xi

k=1 πi(k) and profiti =
∑xi

k=1 πi(k)−
∑xi

k=1 ci(k).

The total valuation of buyers on their allocated bundles under alg is denoted by V (alg) =
∑

b∈B vb(alg(b))
where alg(b) denotes the set of items bought by buyer b from the algorithm alg. The social welfare
made by the algorithm W (alg) is V (alg)− C(alg).

For opt, the welfare-maximizing allocation, λi denotes the number of copies of item i allocated in
opt. C(opt), V (opt) and W (opt) are defined analogously.

2.1 Structural Lemma

A basic challenge for maximizing social welfare in the presence of increasing production costs is
that if one charges too little, then items may be purchased by an initial sequence of buyers whose
valuations are too low to generate much social welfare, until the production cost has jumped to a
point where only very costly items remain that are out of reach of the subsequent high valuation
buyers. On the other hand, if one charges too much, then one loses the opportunity to make certain
sales. This problem is compounded by the fact that buyers may have very different combinatorial

4



cost curve ci()price curve πi()

P f
i = ci(xi + 1)

xi + 1
cinvi (P f

i )
xi

Figure 1: Structural Lemma: if the lightly shaded area is bounded by a small multiple of the doubly
shaded area, then we get good social welfare. xi is the last sold copy of the item and xi + 1 is the
first unsold copy. The lower continuous curve is the cost curve while the upper dashed curve is the
price curve.

preferences—one does not want to “run out” of cheap copies of one item for buyers who may
have high valuation on large sets containing that item. In the following sections, we describe two
pricing algorithms for addressing these issues and achieving good social welfare guarantees. In
order to analyze the pricing algorithms, we first prove a key structural lemma regarding pricing
under increasing production costs; this lemma will be used for all our subsequent analyses.

Lemma 2.1. For a pricing algorithm alg with non-decreasing price functions πi suppose there exists
some α ≥ 1 and β ≥ 0 such that for every allowed set of values of the final prices P fi ,

∑
i∈I
∑cinvi (P fi )

k=1 (P fi − ci(k)) ≤ α
∑

i∈I profiti + β , (1)

then on every instance of buyers

W (alg) ≥ 1
α(W (opt)− β) .

The term
∑cinvi (P fi )

k=1 (P fi − ci(k)) denotes the maximum possible social welfare which can be achieved

by buyers who have valuation P fi for item i and zero for everything else. To see this note that (i)

P fi − ci(k) is the contribution to social welfare if the kth of item i is allocated to such a buyer and,

(ii) the contribution P fi − ci(k) remains non-negative as long as P fi ≥ ci(k) which is true only for

k ≤ cinvi (P fi ). The theorem says that if for every possible set of final prices, we can bound such a
social welfare summed over items by the profit generated by the algorithm, then for every sequence
of buyers the algorithm gets a good social welfare compared to the optimum.

Graphically, as shown in Figure 1,
∑cinvi (P fi )

k=1 (P fi − ci(k)) is the area between the production curve

ci() and the dotted line parallel to x-axis, marked by P fi = ci(xi + 1), (the lightly shaded area)
while profiti is the region between the price curve and production curve (the doubly shaded area).

Proof of Lemma 2.1 : When buyer b ∈ B arrives, let x
(b)
i be the number of copies of item i sold

before b comes in. Hence, the price b sees for item i would be πi(x
(b)
i + 1); for brevity we denote

this qb(i), and for a set S ⊆ I, qb(S) :=
∑

i∈S qb(i). The utility of a set S for buyer b therefore
is vb(S) − qb(S). Since each buyer buys the set that maximizes her utility, hence in particular it

5



implies that the set alg(b) which buyer b bought from alg must be giving her at least as much utility
as the set opt allocated to her i.e.

vb(Sb)− qb(Sb) ≥ vb(S∗b )− qb(S∗b ) .

Summing over all buyers, we get∑
b∈B(vb(Sb)− qb(Sb)) ≥

∑
b∈B(vb(S

∗
b )− qb(S∗b )) .

Adding and subtracting C(alg) and C(opt) on the left hand and right hand sides respectively, we
get(∑

b∈B
vb(Sb)− C(alg)

)
−
(∑
b∈B

qb(Sb)− C(alg)
)
≥

(∑
b∈B

vb(S
∗
b )− C(opt)

)
−
(∑
b∈B

qb(S
∗
b )− C(opt)

)
.

Identifying the term
∑

b∈B vb(Sb)−C(alg) withW (alg), the term
∑

b∈B qb(Sb)−C(alg) with
∑

i∈I profiti
and the term

∑
b∈B vb(S

∗
b )− C(opt) with W (opt) we get

W (alg)−
∑
i∈I

profiti ≥W (opt)−
(∑
b∈B

qb(S
∗
b )− C(opt)

)
. (2)

Since prices are non-decreasing, hence the price faced by any buyer cannot be more than the final

price of the various items. Therefore for each buyer b, qb(S
∗
b ) =

∑
i∈S∗b

πi(x
(b)
i + 1) ≤

∑
i∈S∗b

πi(xi +

1) =
∑

i∈S∗b
P fi . Hence, the term

∑
b∈B qb(S

∗
b ) is at most

∑
b∈B

∑
i∈opt(b) P

f
i =

∑
i∈I(P

f
i · λi)

where recall that λi denotes the number of copies of item i allocated under opt. Moreover, since
C(opt) =

∑
i∈I
∑λi

k=1 ci(k), we have

∑
b∈B

qb(S
∗
b )− C(opt) ≤

∑
i∈I

(P fi · λi)−
∑
i∈I

λi∑
k=1

ci(k)

=
∑

i∈I
∑λi

k=1(P fi − ci(k)) . (3)

The quantity (P fi −ci(k)) is non-negative until ci(k) ≤ P fi , that is it is non negative for k ≤ cinvi (P fi ).

Hence, we have
∑

b∈B qb(S
∗
b ) − C(opt) ≤

∑
i∈I
∑λi

k=1(P fi − ci(k)) ≤
∑

i∈I
∑cinvi (P fi )

k=1 (P fi − ci(k)).
Therefore using Equation (2) we get

W (alg)−
∑
i∈I

profiti ≥W (opt)−
(∑
b∈B

qb(S
∗
b )− C(opt)

)
≥W (opt)−

∑
i∈I

cinvi (P fi )∑
k=1

(P fi − ci(k)) .

If
∑

i∈I
∑cinvi (P fi )

k=1 (P fi − ci(k)) ≤ α
∑

i∈I profiti + β, then using above equation we get

W (alg)−
∑
i∈I

profiti ≥W (opt)− (α
∑
i∈I

profiti + β)⇒W (alg) + (α− 1)
∑
i∈I

profiti ≥W (opt)− β .

Finally using the social welfare generated by the algorithm is at least the profit made, i.e. W (alg) ≥∑
i∈I profiti, we get the desired result W (alg) ≥ (W (opt)− β)/α

In Section B we present a variant of the structural lemma that will be useful for the analysis of the
pricing algorithms presented in Section 4 and Section 5. In the following section, we give pricing
strategies that satisfy Lemma 2.1 (or its variant) for suitable α, β.
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3 Algorithm: Pricing at twice the index

The first two ideas for pricing items with production costs are perhaps to (a) sell at cost, or (b)
sell at some constant times the cost; however, these schemes fail even for simple cost functions like
linear and logarithmic production costs, respectively. (See Appendix A for some examples.) In this
section, we consider the next natural pricing scheme: The price πi(k) of the kth copy of an item is
the production cost of the (2k)th copy. I.e.,

πi(k) := ci(2k).

There is nothing special about pricing at twice the index, other factors would work as well, just
giving slightly different bounds. We shall analyze this algorithm for function classes including
polynomial ci(x) = xd and logarithmic ci(x) = ln(1+x). Since these functions are strictly increasing
and hence invertible, hence we shall have cinvi (ci(x)) = x for all x ≥ 0. To analyze this algorithm,
we shall use the result of Lemma 2.1.

Define Ai(xi) :=
∑cinvi (P fi )

k=1 (P fi − ci(k)). To apply Lemma 2.1, we will show that ∀xi ≥ 0, Ai(xi) ≤
α · profiti(xi) + βi and thereby get

∑
i∈I Ai(xi) ≤ α

∑
i∈I profiti(xi) + β where β =

∑
i∈I βi.

Since the price πi(k) of the kth copy is ci(2 k), hence the profit made from the sales of such of a copy

is ci(2 k) − ci(k). Further, since xi copies of item i have been sold, therefore, P fi = ci(2 (xi + 1))

and hence cinv(P fi ) = 2xi + 1. Therefore, when pricing at twice the index, we have Ai(xi) =∑2(xi+1)
k=1 (ci(2(xi + 1))− ci(k)) and profiti(xi) =

∑xi
k=1(ci(2k)− ci(k)).

3.1 Performance on some cost functions

We now show that for some “well-behaved” classes of functions, we get Ai(x) ≤ α · profiti(x) + βi;
the βi term will usually depend on the production cost of the first few copies of the items—hence
we will guarantee that we get a multiplicative α-fraction of the welfare if we ignore the production
cost of the first few copies.

• Linear production costs: ci(x) = aix+ bi for some constant ai, bi ≥ 0, then we have Ai(x) =
ai(x+ 1)(2x+ 1), and profiti(x) = 1

2aix(x+ 1), and hence Ai(x) ≤ 6 profiti + ai. Lemma 2.1
implies that

W (alg) ≥ 1
6

(
W (opt)−

∑
i∈I ai

)
= 1

6

(
W (opt)−

∑
i∈I(ci(2)− ci(1))

)
.

This result, with suitably modified guarantees, can easily be extended to the case where the
actual production cost lies between two linear curves whose slopes are within a constant
factor of each other.

• Polynomial production costs: ci(x) = aix
d for d > 1. Then Ai(x) ≤ ai

d
d+1 (2(x + 1))d+1,

whereas profiti(x) ≥ ai 1
d+1 (2d−1)xd+1, so some algebra implies that Ai(x) ≤ 12 d profiti(x)+

2d+1 (d+ 2)d+1 ai. Hence

W (alg) ≥ 1
12 d

(
W (opt)− 2 (d+ 2)d+1

∑
i∈I ci(2)

)
.

Such a bound also holds for ci(x) being a polynomial of degree at most d with positive
coefficients. The additive loss of 2O(d log(d)) should be compared to the lower bound of Ω(2d/d)
in Corollary A.3

7



• Logarithmic production costs: ci(x) = ln(1+x). By algebra, Ai(x) ≤ (2x+3), and profiti(x) ≥
ln(3

2)x, so Ai(x) ≤ 2
ln(3/2) profiti(x) + 3, and Lemma 2.1 implies

W (alg) ≥ ln(3/2)
2 (W (opt)− 3|I|) .

3.2 Trade-off between the multiplicative guarantee and additive loss

In the guarantees given above, gains in the multiplicative factor can be made while trading-off
commensurate losses in the additive loss terms. Specifically, consider the polynomial production
cost ci(x) = xd. For a given xi, we have that Ai(xi) ≤ d

d+1 (2 (xi + 1))d+1 and profiti(xi) ≥
(2d−1)xd+1

i
d+1 . Hence,

Ai(xi) ≤
d

d+ 1
(2 (xi + 1))d+1 =

d

d+ 1
(1 + 1/xi)

d+1 2d+1 xd+1
i ≤ 4 d (1 + 1/xi)

d+1 profiti(xi) (4)

where we have used ∀d ≥ 1, 2d − 1 ≥ 2d−1. Therefore, using that

− for all xi ≤ q, Ai(xi) ≤ d
d+1 (2 (xi + 1))d+1 ≤ d

d+1 (2 (q + 1))d+1, and

− for all xi > q, Ai(xi) ≤ 4 d (1 + 1/xi)
d+1 profiti ≤ 4 d (1 + 1/q)d+1Bi(xi),

for any q ≥ 1, we can write

∀xi ≥ 0, Ai(xi) ≤ 4 d (1 + 1/q)d+1 profiti(xi) + (d/(d+ 1)) (2 (q + 1))d+1 .

Denoting α(q) = 4 d (1 + 1/q)d+1 and β(q) = (d/(d+ 1)) (2 (q + 1))d+1 we can write for any q ≥ 1
using Lemma 2.1, W (alg) ≥ (W (opt) −

∑
i∈I β(q))/α(q). A large q means a higher additive loss

but with the benefit of a lower multiplicative factor. Hence, depending on the specific situation,
we can look for a sweet spot by varying the parameter q. In the previous section, we had chosen
q = d+ 1 to give the result for polynomial case.

As we show in Appendix A.3, a social-welfare maximizing algorithm which has no estimate of
W (opt) has to lose an additive factor. At a high level, q represents the number of initial copies
which we are ready to lose.

While the “twice-the-index” algorithm works for the above cost functions, its behavior worsens if
the function grows very fast; Appendix A.2 shows a bad example for the algorithm. Hence, in the
next section, we give a logarithmic-approximation algorithm for the case of arbitrary increasing
production cost curves.

4 Arbitrary Increasing Cost Functions

In this section, we present an algorithm that applies to arbitrary increasing cost functions, giving a
logarithmic approximation minus an additive term that depends on the cost function (Theorem 4.2).
The guarantee is achieved through a simple discretization of the cost function that allows us to
reduce to the case of step functions and apply the algorithm of Bartal et al. (2003). In fact, we get
a multiplicative logarithmic approximation to W (opt) as long as the production cost of the first
few logarithmic copies of all the items is small compared to W (opt). For the 0 − ∞ production
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cost setting (i.e. the first few copies at zero cost and subsequent at an extremely high cost), if
we have Ω(log nm) copies of each item available at zero cost, the additive loss is zero and the
algorithm presented here gets a logarithmic fraction of the optimal social welfare just as in Bartal
et al. (2003).

4.1 Algorithm

Before describing the algorithm, let us introduce some notation. Define Umax as the maximum
welfare any single buyer can achieve. Mathematically,

Umax(I,B) = maxb∈B maxT⊆I
(
vb(T )−

∑
i∈T ci(1)

)
, (5)

Note that the optimal social welfare, W (opt), lies between Umax and m · Umax. The algorithm
requires a parameter Z which satisfies Z ∈ (Umax, Umax/ε]

6. For item i, define `i = min{cinvi (Z),m}
and cinvti (p) = min{cinvi (p), cinvi (Z),m}. We can think of `i as the ‘effective’ number of copies of
item i that are available and of cinvti (p) as the function which gives the ‘effective’ number of copies
of item i whose production cost is at most p; cinvti (p) is the maximum number of copies of item i
that opt can allocate before the production cost exceeds p (Corollary B.1). Note that using cinvti

(as opposed to using cinvi ) is a technicality; one can imagine cinvti ≈ cinvi for a first read.

We now describe the pricing algorithm. In order to price copies for an item i, the algorithm divides
`i copies into contiguous steps and each step has τi number of copies where τi = dlog(4n `i/ε)e;
hence the first step contains copies 1 through τi, the second from τi + 1 through 2τi and so on. Let
srq denote the qth copy relative to the rth step; note that q varies from 1 to τ . The production cost
of copy srq is therefore ci((r− 1) · τi + q); the first copy in step r has cost ci((r− 1)τi + 1) and the
last copy has cost ci(r · τi).
The algorithm sets the price of copy srq as

πi(srq) =
ε Z

4n `i
· 2q + ci(r · τi)

so that the first copy in step r has price ε Z
4n `i

+ ci(r · τi) while the last copy has price at least

Z + ci(r · τi). Note that since any copy in the rth step has production cost at most ci(r · τi),
therefore, the price of every copy in the rth step is greater than its production cost.

For every item, the algorithm sells copies of the item in increasing order of prices, so it might so
happen that after the sale of a few copies from the first step, copies from the second step start
selling, even before all copies of the first step are exhausted, since the copies in the second step are
cheaper than the copies remaining in the first step.

4.2 Analysis

The crucial lemma of this section that will help prove the social welfare guarantee is

Lemma 4.1. For every item i ∈ I,
∑cinvti (P fi )

k=1 (P fi − ci(k)) ≤ 4 · τi · profiti + ε Z
2n + (ci(τi)− ci(1)) · τi

We now use Lemma 4.1 to prove the main result of this section.

6We can remove this assumption at a further loss of O(logW (opt) (log logW (opt))2) in the approximation guar-
antee (Balcan et al., 2008).
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Theorem 4.2. Given a parameter Z ∈ (Umax, Umax/ε], the social welfare W (alg) achieved by the
algorithm satisfies

W (alg) ≥
W (opt)/2−

∑
i∈I(ci(τi)− ci(1)) · τi

4 ·maxi∈I τi

where τi = dlog(4n `i/ε)e and `i = min{cinvi (Z),m}.

Roughly, Theorem 4.2 states that the social welfare achieved by the algorithm is a logarithmic
approximation to the optimal social welfare minus the sum of production cost of the first few
copies of every item.

Proof of Theorem 4.2 : Combining the result of Lemma 4.1 over all items i ∈ I, we get

∑
i∈I

cinvti (P fi )∑
k=1

(P fi − ci(k)) ≤ 4 ·max
i∈I

τi ·
∑
i∈I

profiti +
ε Z

2
+
∑
i∈I

(ci(τi)− ci(1)) · τi .

We now use the variant of structural lemma, Corollary B.1, stated in Appendix B, to get

W (alg) ≥
W (opt)− ε Z

2 −
∑

i∈I(ci(τi)− ci(1)) · τi
4 ·maxi∈I τi

and finally use W (opt) − ε Z
2 ≥ W (opt)/2 (which is implied by Z ∈ (Umax, Umax/ε] ) to get the

desired result.

We now need to prove Lemma 4.1. The analysis below considers any particular item i ∈ I. Recall
that P fi denotes the price of the lowest price unsold copy of item i. Let t be the step which contains

the copy cinvti (P fi ). Define for 1 ≤ r < t, sr = τi, and st = min{τi, cinvti (P fi ) − (t − 1)τi} so that

we have
∑t

r=1 sr = cinvti (P fi ). Further, for item i, let profiti(r) denote the total profit made by the
algorithm from the sales of copies of the item from its rth step. Finally for convenience of analysis
define ci(0) = ci(1).

The following lemma bounds the left hand side of the inequality claimed in Lemma 4.1 in terms of
a related quantity.

Lemma 4.3.
∑cinvti (P fi )

k=1 (P fi − ci(k)) ≤
∑t

r=1(P fi − ci((r − 1) · τi)) · sr

Proof. Note that
∑cinvti (P fi )

k=1 (P fi − ci(k)) =
∑t

r=1

∑sr
x=1(P fi − ci((r − 1) · τi + x)) where we have

broken up the summation across the different steps. Finally, ci((r − 1) · τi + x) ≥ ci((r − 1) · τi)
since we are dealing with a non-decreasing production curve ci() and therefore for each r, we have∑sr

x=1(P fi − ci((r − 1) · τi + x)) ≤ (P fi − ci((r − 1) · τi)) · sr. This gives us the desired result.

Lemma 4.4. For each step r such that 2 ≤ r ≤ t, (P fi − ci(r · τi)) ≤ 2 · profiti(r) + ε Z
4n `i

.

Proof. This is because

− either (P fi − ci(r · τi)) >
ε Z

4n `i
, in which case profiti(r) ≥ (P fi − ci(r · τi))/2.

This is because for every p such that ε Z
4n `i

≤ p ≤ Z, the rth step has a copy whose price is

in the range [p/2 + ci(r · τi), p+ ci(r · τi)) and hence in particular, there is a copy in the rth
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step whose price q is in the range [(P fi − ci(r · τi))/2 + ci(r · τi), (P fi − ci(r · τi)) + ci(r · τi)) =

[(P fi − ci(r · τi))/2 + ci(r · τi), P fi ). Therefore the price q of such a copy is strictly less than

P fi and since the P fi is the price of the lowest priced unsold copy of item i, therefore the copy
at price q must have been sold. Any copy in rth step has production cost at most ci(r · τi),
hence the sale of a copy at price q ≥ (P fi − ci(r · τi))/2 + ci(r · τi) must result in a profit of

at least (P fi − ci(r · τi))/2.

− or (P fi − ci(r · τi)) ≤
ε Z

4n `i
.

Since profiti(r) is a non-negative quantity, hence we see that in both cases the desired inequality is
satisfied.

Proof of Lemma 4.1 :

Note that

t∑
r=1

(P fi − ci((r − 1) · τi)) · sr = (P fi − ci(0)) · s1 +
t∑

r=2

(P fi − ci((r − 1) · τi)) · sr (6)

First, using Lemma 4.4 we bound the second summation on the right hand side of equation (6).

t∑
r=2

(P fi − ci((r − 1) · τi)) · sr ≤ 2 ·
t∑

r=2

profiti(r − 1) · sr +
t∑

r=2

ε Z

4n `i
· sr

≤ 2 · (max
r
sr) ·

t∑
r=2

profiti(r − 1) +
ε Z

4n `i
·

t∑
r=2

sr

≤ 2 · τi · profiti +
ε Z

4n
(7)

where in the last inequality we have used
∑t

r=2 sr = cinvti (P fi ) ≤ `i and that τi ≥ sr for any r.

Now we bound the first term on the right hand side of equation (6).

(P fi − ci(0)) · s1 = (P fi − ci(τi)) · s1 + (ci(τi)− ci(0)) · s1

≤ 2 · τi · profiti(1) +
ε Z

4n
+ (ci(τi)− ci(0)) · s1

≤ 2 · τi · profiti +
ε Z

4n
+ (ci(τi)− ci(0)) · s1 (8)

where the first inequality follows from Lemma 4.4 and the second follows from noting that the total
profit profiti made through sales of copies of item i is at least as much as the profit profiti(1) made
through the sale of copies from the first step of the item.

Using Lemma 4.3 and Equations (6), (7) and (8) derived above we get

cinvti (P fi )∑
k=1

(P fi − ci(k)) ≤ 4 · τi · profiti + 2 · ε Z
4n

+ (ci(τi)− ci(0)) · τi

Using Claim 4.3 and noting that by definition ci(0) = ci(1), we get the desired result.
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5 Smoothing Algorithm

The pricing algorithm of Section 4 gives us a logarithmic multiplicative guarantee along with some
additive loss for all increasing cost curves. Twice-the-index algorithm presented in Section 3 gives a
constant approximation factor plus an additive loss for polynomial curves. This raises the question
of whether there is a pricing algorithm which can achieve the best of both the worlds i.e. give
logarithmic multiplicative guarantees for general curves but constant factor guarantee for nice
curves such as polynomial and logarithmic. In this section we present a pricing algorithm that
achieves that for the case of convex cost functions. It gives logarithmic guarantees for general
convex curves (Corollary 5.6) but in addition, gives for polynomial cost curves, a constant factor
approximation (Theorem 5.15).

5.1 Intuition

Ideally, we would like to set prices which are sufficiently far above the cost curve (so that we
generate a large social welfare), yet not be too far above it (else the high prices may result in no
sales, causing a large additive loss). Hence, we run into problems when the cost curve increases
sharply—and the intuitive goal is to create a price curve which smooths out these sharp changes
in the cost curve while staying “close” to it.

The smoothing algorithm takes the cost curve, and creates a price function which is a monotone
step function: copies of the item are grouped into intervals, with all copies in an interval having the
same price. We call these intervals “price intervals”. The algorithm creates the price curve from
right to left. If we think of `i as the effective number of copies of item i and Z as the highest price,
then the `thi copy is priced first at price Z through creation of the price interval [b2

3 `ic,∞)7, with
items in this interval priced at Z; subsequently, price intervals are created progressively moving
leftwards until we have priced the first copy. At each point, we use the intuition from above: if the
price is much higher than the cost, we set the price for the new interval such that the price-cost
gap is slashed by a factor of 2, else we set the price to maintain a sufficient gap from the cost.

5.2 The smoothing algorithm

Before we give the algorithm (in Figure 2), let us give some definitions; we urge the impatient
reader to jump to Section 5.3 to get a quick rough feel of the algorithm. We assume that the cost of
the first copy of every item is 0 i.e. ∀i, ci(1) = 0 8. Recall the notation Umax defined in Equation 5
in Section 4; it represented the maximum welfare which can be made through a single buyer. In
the present scenario since ci(1) = 0, hence Umax equals maxb∈B maxT⊆I vb(T )

Define `i = min{cinvi (Z),m} and Bi = d12 log(4n`i/ε)e. Similar to Section 4, at a high level, think
of `i as being the “effective number” of copies of item i available, and Bi as the “number of different
price levels” we create in our price curve. cinvti (p), as in Section 4, is defined as the “truncated”
value min{cinvi (p), cinvi (Z),m}; please refer to Section 4 to get a sense of why cinvti is defined the

way it is. Define widthi(p) :=
⌊ cinvti (p)

Bi

⌋
; this function will determine the number of copies we group

together in a price interval. We assume that

`i ≥ Bi ≥ 12; (9)

7We abuse notation slightly by denoting the integer interval {r, r+1, . . . , s−1} as the half-open real interval [r, s).
8 In Lemma D.1 we show that this is without loss of generality.
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see Claim C.3 for why this is without loss of generality.

1: for all x ≥ b2
3 `ic, set πi(x) := Z

2: set x← b2
3 `ic

3: while x > 1 do
4: if widthi(πi(x)) ≥ 1 then
5: set x′ ← max{x− widthi(πi(x)), 1}
6:

set ∆ =

{
πi(x)−ci(x)

2 if πi(x) ≥ 3 ci(x)
ci(x)

2 otherwise

7: for all y ∈ [x′, x) , set πi(y) := ci(x) + ∆
8: set x← x′

9: else
10: for all y ∈ [1, x), set πi(y) := πi(x)
11: set x← 1

Figure 2: Smoothing algorithm

Let πi : Z+ → R+ be the price function and let Ji denote the set of price intervals for item i, and
with zi = |Ji|. We refer to the qth interval of item i as Jiq, with Ji1 being the price interval that
contains the first copy of item i, and Jizi = [b2

3 `ic,∞). Let πi(Jiq) be the price of the copies in
the interval Jiq. Depending on the production curve, two consecutive price intervals may have the
same price. Also, we will formally state later that the prices we generate are non-decreasing, and
always stay above the production cost for all copies less than `i.

5.3 The main ideas

Smoothing: Step 6 ensures a smooth price curve: if the price is more than thrice the production
cost, we slash the gap between the price and production cost by two else we allow the price to stay
at a sufficient gap from the cost.

Price Interval Size : The idea of the analysis is to show that whenever the number of copies
sold moves from a lower price interval to a higher one, the social welfare generated by selling copies
at the lower price is enough to be competitive against opt, even if we sell no further copies at the
higher price. Consequently, the size of a price interval Jiq must depend on the price of items in
the next interval Ji q+1. It turns out that to get a multiplicative approximation factor of O(Bi), if

the price of copies in Ji q+1 were P , it suffices to set the width of Ji q to be b c
invt
i (P )
Bi
c = widthi(P ).

Here is a simple special case that illustrates why: suppose only item i was being sold and we sold
all copies from Jiq but no copies from interval Ji q+1. We would like to apply Lemma 5.4. The

final price P fi in that case is P = πi(Ji q+1). Staring at the left hand side of Equation (1), we see
that it is at most P · cinvti (P ). Since we sold all the copies in price interval Jiq, we sold at least

|Jiq| = b
cinvti (P )
Bi
c many copies, each at profit at least P/6 (something we will prove later). Hence on

the right hand side of Equation (1), the term profiti is at least P · b c
invt
i (P )
Bi
c/6. Putting α = O(Bi)
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we satisfy Equation (1) and thereby get an O(Bi) approximation. Since the width of Jiq depends
on the price of Ji q+1, it is natural that our pricing algorithm creates price intervals from right to
left.

Termination: The algorithm terminates in one of two ways: either while creating such appropri-
ately sized price intervals, we hit the first copy (i.e., x′ ← 1 in Step 5, and then the loop condition
fails in Step 3) or the price p of some price interval is low enough that p < ci(Bi), which implies

cinvti (p) < Bi (the proof of implication appears later) and therefore widthi(p) =
⌊ cinvti (p)

Bi

⌋
< 1: this

causes x ← 1 in Step 11. In the latter case, the price has become low enough that we can simply
group all remaining copies into the lowest priced interval Ji1 at price p. The subsequent analysis
will often have to separately consider these two cases: whether x ← 1 is achieved in Step 5 or in
Step 11.

Figure 3: The figure shows the pricing curve drawn
by the smoothing algorithm for the production curve
ci(x) = x3. The lower line is the production curve.
The upper thicker line is the pricing curve. We can
observe that the price curve is flat towards the ex-
treme right; this flat region contains the right-most
price interval. Towards the extreme left the price curve
appears to be a smooth curve. The inset shows the in-
dividual price intervals.
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Figure 4: The figure shows the pricing curve
drawn by the smoothing algorithm for the linear
production curve

5.4 The Analysis

Let us call an interval Jiq = [r, s) to be full-sized if its width equals widthi(πi(s)). Note that
the right-most interval Jizi is not full sized since it semi-infinite. Further, the left-most interval
Ji1 may not be full-sized either because the algorithm ran out of copies, or the price became too
low so that all remaining unpriced copies were bunched together. We first show that if we sell at
least |Ji1| + |Ji2| copies of item i, i.e., we have sold at least one full-sized interval, we get a good
approximation factor for the reasons we discussed in Section 5.3. This is proved in Lemma 5.2.

Then we consider the case when the number of items sold is less than |Ji1| + |Ji2|: in this case
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Figure 5: The figure shows the pricing curve drawn
by the smoothing algorithm a piece-wise linear pro-
duction curve. The lower line is the production curve.
The upper thicker line is the pricing curve.
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Figure 6: The figure shows the pricing curve drawn
by the smoothing algorithm a production curve which
grows as x2 initially and as x3 in the final phase. The
lower line is the production curve. The upper thicker
line is the pricing curve.

we cannot show a good multiplicative loss. Instead, we show that the price of items in the first
two intervals is small in this case, which bounds the additive loss. This is proved in Lemma 5.5.
Finally, our main result Theorem 5.4 follows from these two lemmas.

All the intervals except the leftmost Ji1 and rightmost Jizi ones are created in a similar fashion;
intervals Ji1 and Jizi have to treated as special cases at several points in the analysis. Also, the
analysis which follows from this point onwards up till (and not including) Theorem 5.4 is per item.
Hence the subscript i in the terms involved is irrelevant from the point of analysis and is present
only to maintain uniformity in presentation.

To begin, we state some useful properties of the prices and widths of the intervals.

Lemma 5.1 (Prices and Widths). The following facts about interval prices hold for the intervals
in Ji for any non-decreasing cost curve:

a. For any Jiq = [r, s) such that q 6= zi, πi(Jiq) ≥ 3
2 ci(s). Hence, πi(x) ≥ 3

2 ci(x) for x ∈ Jiq.
a’. If the cost curve is convex, πi(b2

3 `ic) ≥
3
2 ci(b

2
3 `ic).

b. For consecutive Jiq and Ji q+1 and q 6= zi − 1, we have πi(Jiq) ≤ πi(Ji q+1) ≤ 2πi(Jiq). If
the cost curve is convex the claim also holds for q = zi − 1.

c. All price intervals Jiq = [r, s) (q /∈ {1, zi}) have |Jiq| = widthi(πi(s)) = widthi(πi(Ji q+1)).

Lemma 5.1(a) states that the price of any copy is sufficiently far from the production cost of that
copy. Lemma 5.1(a’) states the same claim about the left end of the right-most interval Jizi in case
the cost curve is in addition convex. Lemma 5.1(b) states the price of copies in the interval Ji q+1 is
higher than that of Ji q, but not too far from it. Lemma 5.1(d) states that all price intervals except
possibly the left-most and the right-most are full-sized. Armed with these facts, we first show that
if “many” copies of item i are sold, then we are in good shape. The other case where “few” copies
are sold, is dealt with subsequently.
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5.4.1 The Case of Many Copies.

Suppose we sell all copies in some interval Jiq for q > 1: then we get that the profit made from
that interval alone gives us a good approximation.

Lemma 5.2. If the number of sold copies xi of item i is at least |Ji1|+ |Ji2|, then P fi · cinvti (P fi ) ≤
12Bi · profiti, where profiti :=

∑xi
k=1(πi(k)− ci(k)).

Proof. Let q be the largest integer such that Jiq = [r, s) is completely sold out; hence q ∈ [2, zi).

The final price is P fi = πi(Ji q+1) = πi(s). We want to show we make a reasonable profit from the
sales of copies in Jiq. From Lemma 5.1(c), there are widthi(πi(s)) many copies in Jiq. For each of
these copies k ∈ [r, s), the profit is πi(k)− ci(k) ≥ πi(k)− ci(s), because costs are non-decreasing.

However, by Step 7 of the pricing algorithm, for all k ∈ Jiq, πi(k) = ci(s)+∆, where ∆ is determined
by Step 6.

• Either πi(s) ≥ 3ci(s), ∆ = 1
2 (πi(s)− ci(s)) ≥ 1

3 πi(s),
• Or πi(s) < 3ci(s), ∆ = ci(s)/2 >

1
6 πi(s).

So, we make a profit of at least πi(s)/6 from each of the widthi(πi(s)) = b c
invt
i (πi(s))

Bi
c many copies

in Jiq:

profiti ≥
πi(s)

6 · b c
invt
i (πi(s))

Bi
c ≥ πi(s)·cinvti (πi(s))

12Bi
,

where the last inequality is because btc ≥ t/2 for t ≥ 1. Plugging in P fi = πi(s) completes the
proof.

5.4.2 The Case of Few Copies

Now suppose item i is such that the number of copies we sell either lies within the left-most interval
Ji1, or only covers a small fraction of the second interval Ji2: the argument given above does not
hold in that case. However we can show the following result.

Lemma 5.3. If the number of sold copies xi of item i is less than |Ji1|+|Ji2| then πi(P
f
i )·cinvti (P fi ) ≤

πi(Ji2) · cinvti (πi(Ji2)).

Proof. Since we end up selling less than |Ji1| + |Ji2| copies, hence the final price P fi is at most
max{πi(Ji1), πi(Ji2)} which is πi(Ji2) since Lemma 5.1(b) tell us that πi(Ji1) ≤ πi(Ji2). Hence,

P fi · cinvti (P fi ) ≤ πi(Ji2) · cinvti (πi(Ji2)) (cinvti (p) is non-decreasing function of p).

5.4.3 Finishing the Analysis

Lemma 5.2 and Lemma 5.3 together give us the main result of this section.

Theorem 5.4. The social welfare W (alg) achieved by the smoothing algorithm on a non-decreasing
cost curve given an estimate Z ∈ (Umax, Umax/ε] satisfies

W (alg) ≥
W (opt)−

∑
i∈I πi(Ji2) · cinvti (πi(Ji2))

12 maxi∈I Bi
,

where Bi := d12 log(4n`i/ε)e, and `i := min{cinvi (Z),m}.
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Roughly, Theorem 5.4 states that the social welfare attained by the smoothing algorithm is a
logarithmic approximation to (optimal social welfare minus the price of the first few copies of each
item).

Proof of Theorem 5.4 : For each item i, depending on the number of copies sold, either
Lemma 5.2 or Lemma 5.3 applies, which implies that for each i ∈ I,

P fi · cinvti (P fi ) ≤ 12Bi · profiti + πi(Ji2) · cinvti (πi(Ji2)).

Summing over all items i, we get∑
i∈I

P fi · c
invt
i (P fi ) ≤ 12 max

i∈I
Bi · profiti +

∑
i∈I

πi(Ji2) · cinvti (πi(Ji2).

Applying Corollary B.1, we get

W (alg) ≥
W (opt)−

∑
i∈I πi(Ji2) · cinvti (πi(Ji2))

12 maxi∈I Bi
,

which completes the proof.

5.5 Convex cost curves

Theorem 5.4 leaves us unsatisfied since the additive loss, which is the price of the first few copies
of each item, is not stated in terms of quantities that are part of the problem statement such as
production cost. For convex curves, we are able to overcome that deficiency. The additive loss
would be, roughly, the sum of production cost of the first few copies of every item. The crucial
lemma which we will prove in this section is:

Lemma 5.5. For a convex cost curve, πi(Ji2) · cinvt(πi(Ji2)) ≤ max{Bi ci(Bi), ε Z2n}.

which will suffice to prove the following result.

Corollary 5.6. The social welfare W (alg) achieved by the smoothing algorithm on a non-decreasing
convex cost curve given an estimate Z ∈ (Umax, Umax/ε] satisfies

W (alg) ≥
W (opt)/2−

∑
i∈I Bi · ci(Bi)

12 maxi∈I Bi
,

where Bi := d12 log(4n`i/ε)e, and `i := min{cinvi (Z),m}.

Corollary 5.6 gives us the same approximation factor to optimal social welfare as guaranteed by
Theorem 5.4, except that it states the additive loss to be the sum of production cost of first few
copies of each item.

Proof of Corollary 5.6 : Putting Theorem 5.4 and Lemma 5.5 together,

W (alg) ≥
W (opt)− ε Z/2−

∑
i∈I Bi · ci(Bi)

12 maxi∈I Bi
.

Using εZ ≤ Umax ≤W (opt), we get the desired result.

We now need to prove Lemma 5.5. The pricing algorithm terminates when it has priced all the
copies, i.e. x is set to 1 and the if condition in Step 3 becomes false. x can be set to 1 either
in Step 8 (preceded by x′ being set to 1 in Step 5) or in Step 11. We consider these two cases
separately.
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− Algorithm terminates through Step 11: Lemma 5.8 proves that cinvti (πi(Ji2)) · πi(Ji2) < Bi ·
ci(Bi).

− Algorithm terminates through Step 5: Lemma 5.12 proves that cinvti (πi(Ji2)) · πi(Ji2) < εZ
2n .

Proof of Lemma 5.5 : The algorithm terminates either through Step 5 or Step 11 and Lemma 5.12
and Lemma 5.8 together indicate that πi(Ji2) · cinvt(πi(Ji2)) ≤ max{Bi ci(Bi), ε Z2n}.
Before proving Lemma 5.8 and Lemma 5.12, we state and prove the following lemma that charac-
terizes the circumstances under which the algorithm terminates in either condition.

Lemma 5.7. The pricing algorithm terminates through Step 11 if and only if πi(Ji2) < ci(Bi).

Proof. Let Ji2 = [s, r). We first prove that if πi(Ji2) < ci(Bi), then the algorithm terminates in
Step 11. If πi(s) = πi(Ji2) < ci(Bi), then it implies that cinvi (πi(s)) < Bi, and by definition of cinvt(),

cinvti (πi(s)) < Bi which implies that widthi(πi(s)) = b c
inv
i (πi(s))
Bi

c = 0. Hence, right after creation of
Ji2, when the algorithm checks for the if condition on point s in Step 4, it shall evaluate to false
and therefore, the algorithm shall terminate through Step 11.

To prove the other direction, if the algorithm terminates through Step 11, then it must be the case
that the if condition in Step 4 evaluated to false for some x. Further, x must be the left-end point
of Ji2. This is because once the if condition evaluates to false, the algorithm jumps to Step 11 and
creates a single price interval containing all copies that have not been priced yet and it includes the
first copy and hence, this price interval must be Ji1. So x must be the left-end point of the price
interval just after Ji1, i.e. Ji2.

Now, widthi(πi(x))= widthi(πi(Ji2))= b c
invt
i (πi(Ji2))

Bi
c < 1 implies that

cinvti πi(Ji2))
Bi

< 1 and so cinvti (πi(Ji2)) <

Bi. By definition of cinvti (), this implies that min{cinvi (πi(Ji2), `i} < Bi. Since by Equation (9),
`i ≥ Bi, it must be the case cinvi (πi(Ji2)) < Bi, which by definition of cinvi () can occur only if
πi(Ji2) < ci(Bi).

We now prove Lemma 5.8 and Lemma 5.12 that treat the two conditions under which the algorithm
can terminate.

Algorithm terminates through Step 11: The proof that price of Ji2 is small follows almost
immediately in this case.

Lemma 5.8. If the algorithm terminated through Step 11 then πi(Ji2) · cinvti (πi(Ji2)) < ci(Bi)Bi.

Proof. If the algorithm terminated through Step 11, then Lemma 5.7 implies that πi(Ji2) < ci(Bi).
By definition of cinvti (), this implies that cinvti (πi(Ji2)) < Bi and hence we get the result.

Algorithm terminates through Step 5: We will prove that price of the interval Ji2 is ‘small’
by showing that relative to the price of right-most interval Jizi , the prices for the subsequently
created intervals on its left, have been slashed sufficiently often. For item i, label a copy x close if
πi(x) < 3 ci(x), else label it as far. Depending on which of r and s are close or far, mark a price
interval Jiq = [r, s) as one of {(C,C), (F,C), (C,F ), (F, F )}. Note that the right-most interval Jizi
is not marked since it is semi-infinite. The following lemma indicates that in case prices are ‘far’
from the production cost, the algorithm slashes the prices exponentially.
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Lemma 5.9. If a contiguous sequence of price intervals Jiq, Ji q+1, · · · , Ji q+t−1 are all marked
(F, F ) and Ji q+t is marked (F,C), then πi(Jiq) ≤ (2

3)t πi(Ji q+t).

Proof. If interval Jip = [r, s) is marked (F, F ) which implies that 3 ci(s) < πi(s) = πi(Ji p+1), then
the pricing algorithm, by Step 6, sets

πi(Jip) = ci(s) + πi(s)−ci(s)
2 = πi(s)+ci(s)

2 ≤ πi(s)+
1
3
πi(s)

2 = 2
3 πi(s) = 2

3 πi(Ji p+1).

Hence, πi(Jiq) ≤ (2
3)πi(Ji q+1) ≤ · · · ≤ (2

3)t πi(Ji q+t).

Lemma 5.10 states that if we ever have a price interval that is marked (F,C), there are ‘many’
price intervals to the left of that interval. Lemma 5.11 states that there are ‘many’ intervals to the
left of the right-most interval Jizi .

Lemma 5.10. Consider an interval Jiq = [r, s) with q 6= zi that is marked (F,C). If the algorithm
terminated through Step 5, then there are at least Bi/4 intervals Jiq′ with q′ < q. In particular, Jiq
cannot be the first price interval i.e. q 6= 1.

Proof. Since s is close i.e. πi(s) < 3 ci(s), the algorithm, by Step 6, sets πi(Jiq) = ci(s) + ci(s)
2 =

3
2 ci(s). From the definition of r being marked far, ci(r) ≤ 1

3 πi(r) = 1
3

3
2 ci(s) = 1

2 ci(s). Hence,
across the interval Jiq, the cost function increases by at least 1

2 ci(s). Since ci(·) is convex, the
production cost should rise by at least 1

2ci(s) starting from copy s onwards for every |Jiq| copies.
So, ci(r + 5 · |Jiq|) = ci(s+ 4 · |Jiq|) ≤ ci(s) + 4 · 1

2 (ci(s)) = 3 · ci(s) and hence

cinvti (3 ci(s)) ≤ cinvi (3 ci(s)) < s+ 4 · |Jiq| = r + 5 · |Jiq|. (10)

By Lemma 5.1 (for q 6= 1) and Proposition C.5(a) (for q = 1), we know that |Jiq| ≤ widthi(πi(s)).

Since πi(s) < 3 ci(s), |Jiq| ≤ widthi(πi(s)) ≤ widthi(3 ci(s)) ≤
cinvti (3 ci(s))

Bi
where for the second

inequality we have used Observation C.1 which says widthi(p) is a non-decreasing function of p.
Using (10), we get

|Jiq| ≤
cinvti (3 ci(s))

Bi
≤ r+5·|Jiq |

Bi
=⇒ |Jiq| ≤ r

Bi−5

By Equation (9), Bi ≥ 12 and therefore, Bi − 5 ≥ Bi/2, hence the above equation implies that
|Jiq| · Bi2 ≤ r. Since |Jiq| ≥ 1 (any price interval contains at least one copy) and B ≥ 12, hence

r ≥ |Jiq| · Bi2 ≥ 6. Therefore q cannot be 1, since for q = 1, we have r = 1 i.e. Ji1, by definition, is
of the form [1, s).

Now, since, q 6= 1, Jiq cannot contain the first copy i.e. r ≥ 2 and hence r − 1 ≥ r/2, and since we
already have |Jiq| · Bi2 ≤ r, therefore we get,

|Jiq| · Bi4 ≤ r − 1 (11)

Since the algorithm terminated in Step 5, by Lemma C.6, for all q′ < q, |Jiq′ | ≤ widthi(πi(Jiq)).
Moreover, |Jiq| = widthi(πi(Ji q+1)) ≥ widthi(πi(Jiq)) where the equality follows from Lemma 5.1
and the inequality follows from Observation C.1 and Lemma 5.1(b). Hence, we have that for all
q′ < q, |Jiq′ | ≤ |Jiq|. Since there are r − 1 copies to the left of Jiq and for all q′ < q, |Jiq′ | ≤ |Jiq|,
therefore, by (11), we get the desired result that there are at least Bi/4 price intervals Jiq′ with
q′ < q.
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Lemma 5.11. If the algorithm terminated through Step 5, then there are at least Bi/3 intervals
Jiq with q < zi.

Lemma 5.12. If the algorithm terminated through Step 5 then πi(Ji2) · cinvti (πi(Ji2)) < εZ
2n .

Proof. The interval Ji1 can be marked either (F,C) or (F, F ), since ci(1) = 0 while πi(1) > 0
(Observation C.2). By Lemma 5.10, Ji1 cannot be marked (F,C). Hence, the only case left is when
Ji1 is marked (F, F ). Let q be the smallest value, if one exists, such that Jiq is marked (F,C); note
that q > Bi/4 by Lemma 5.10, and in particular q > 2. If no such (F,C) interval exists, set q ← zi.

By definition of Jiq, all intervals between Ji1 and Jiq are marked (F, F ). Depending on whether
q 6= zi or q = zi, Lemma 5.10 or Lemma 5.11 respectively imply there are at least Bi/4 of these

intervals. By Lemma 5.9, πi(Ji1) ≤ (2
3)Bi/4 πi(Jiq) ≤ πi(Jiq)

4n`i/ε
, since Bi = d12 log(4n`i/ε)e.

Moreover, by Lemma 5.1(b), πi(Ji2) ≤ 2 · πi(Ji1) ≤ 2πi(Jiq)
4n`i/ε

. By definition of cinvt(), cinvt(πi(Ji2)) ≤

`i; this gives πi(Ji2) · cinvt(πi(Ji2)) ≤ 2πi(Jiq)
4n`i/ε

· `i ≤ εZ
2n .

The smoothing algorithm can give purely multiplicative guarantees as long as the cost of the first
O(log n) copies of the items is small compared to W (opt). As an example, suppose the cost functions
are ci(k) = 0 for k ≤ d log n, and ci(k) =∞ for k > d log n for some constant d. Then `i ≤ d log n,
and Bi = O(log n/ε). So for d large enough constant, Bi · c(Bi) = 0, and we get an O(log n)
approximation to the social welfare, as in Bartal et al. (2003). (This is best possible for online
algorithms (Awerbuch et al., 1993).)

5.5.1 Polynomial production curves

For the case of polynomial production curves of the form9 ci(x) = (x − 1)d , we show that the
smoothing algorithm gives approximation guarantees close to that of pricing at twice the index; refer
Theorem 5.15 and the approximation guarantees given by twice-the-index algorithm on polynomial
curves in Section 3.

In the analysis below, we make a few assumptions. First, we assume that m ≥ cinvi (Z) for all items
i. This case interests us since it is here that the number of copies of an item that are available are
less than the number of buyers. In this scenario, for all p ≤ Z, cinvti (p) = cinvi (p) where, recall that
Z is the parameter supplied to the smoothing algorithm that satisfies Z ∈ (Umax, Umax/ε]. Second,
we assume that

Bi ≥ 18 (2d+ 1) and `i ≥ 2(Bi + 1) (12)

These requirements on `i and Bi subsume the ones mentioned in Equation 9.

The crucial result which will help us prove the improved bound is Lemma 5.13.

Lemma 5.13. For all copies x in the range [Bi, b(2/3)`ic − (2d+ 1) · b`i/Bic], 3
2 · ci(x) < πi(x) <

3 · ci(x).

9In case the reader is curious on why we choose the polynomial cost curve to be (x − 1)d (d ≥ 1) instead of the
more natural choice of xd, we recall that the smoothing algorithm analysis assumed that ci(1) = 0 and hence we
made the choice of (x− 1)d.
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The result says that apart possibly from a few copies on the left (< Bi) and right (> b(2/3)`ic −
(2d+ 1) · b`i/Bic) ends, the price is close to the production cost for all copies. We now show how
such a result helps in proving in the improved bound. In preparation for applying the structural
lemma in Theorem 5.15, the following result gives us the per-item profit equation.

Lemma 5.14. For every item i, we have cinvi (P fi ) ·P fi ≤ 18 (d+1) (27/16)d+1 profiti+18 ci(Bi) ·Bi.

Proof. We consider three cases based on the number of copies xi of item i that were sold by the
smoothing algorithm alg.

− The algorithm sold at most Bi copies of item i.

By Lemma 5.13, the price of Bth
i copy is at most 3 · ci(Bi) = 3 (Bi − 1)d. Since algorithm

sold less than Bi copies of item i, and by Lemma 5.1(b), prices are non-decreasing from

left to right, hence, P fi ≤ 3 (Bi − 1)d and therefore, cinvi (P fi ) ≤ 31/d(Bi − 1) + 1. We have

P fi · cinvi (P fi ) ≤ 3 (Bi − 1)d (31/d(Bi − 1) + 1).

− The algorithm sold at least Bi copies and less than b(2/3)`ic − (2d+ 1) · b`i/Bic copies.

Let xi be the last copy sold. We have P fi = πi(xi + 1) < 3 · ci(xi + 1) = 3 · xdi where the

inequality follows from Lemma 5.13. Hence, cinvi (P fi ) ≤ 31/d · xi + 1. We have P fi · cinvi (P fi ) <
(31/d · xi + 1) · 3 · (xi)d < 6 · 31/d · xd+1

i .

For every copy x up till xi, alg earned profit at least ci(x)/2. From Lemma 5.13, πi(x) −
ci(x) > ci(x)/2. Therefore, the profit profiti earned by alg from the sales of item i is at least∑xi

k=1
ci(k)

2 =
∑xi

k=1
1
2(k − 1)d ≥

∫ xi
1

1
2(k − 1)ddk ≥ 1

2(d+1)(xi − 1)d+1. Since xi ≥ Bi and by

Equation 12, Bi ≥ 18(2d+ 1) ≥ 54, therefore, (xi − 1) ≥ (53/54) · xi. Therefore, profiti is at
least 1

2(d+1)(53
54)d+1xd+1

i .

Hence, we have cinvi (P fi ) · P fi < 2(d+ 1)(54
53)d+1 · 6 · 31/d · profiti.

− The algorithm sold at least b(2/3)`ic − (2d+ 1) · b`i/Bic copies.

First, we note that P fi · cinvi (P fi ) ≤ `di · `i = `d+1
i ; this follows from the definition of `i and the

way we set the price of the right-most price interval. Now following the same argument as
in previous case, we know that the profit profiti is at least

∑xi
k=1

1
2ci(x) ≥ 1

2(d+1)(xi − 1)d+1

where xi ≥ b(2/3)`ic − (2d + 1) · b`i/Bic. Since by Equation 12, Bi ≥ 18(2d + 1), hence,
b(2/3)`ic−(2d+1)·b`i/Bic ≥ (2/3)`i−1−(2d+1)·`i/Bi ≥ (2/3)`i−`i/18−1 = (11/18)`i−1.

Hence the profit profiti is at least 1
2(d+1)((11/18)`i − 1− 1)d+1 ≥ 1

2(d+1)(16/27)d+1`d+1
i where

we have used that ((11/18)`i − 2 ≥ (16/27)`i since by Equation 12, `i ≥ 2(Bi + 1) ≥ 2 ·
(18(2d+ 1) + 1) ≥ 110. Hence cinvi (P fi ) · P fi ≤ 2(d+ 1)(27/16)d+1 · profiti.

In all three cases, P fi · cinvi (P fi ) ≤ 18 (d+ 1) (27/16)d+1profiti + 3 (Bi − 1)d (31/d(Bi − 1) + 1). Now
note that ci(Bi) = (Bi−1)d and 3 (31/d(Bi−1) + 1) ≤ 18Bi. Hence we have the desired result.

We now present the main result of this section.

Theorem 5.15. The social welfare W (alg) achieved by the smoothing algorithm on the polynomial
curve ci(x) = (x− 1)d satisfies

W (alg) ≥
W (opt)− 18

∑
i∈I Bi · ci(Bi)

18 (d+ 1) (27/16)d+1
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where we assume Bi ≥ 18(2d+ 1), `i ≥ 2(Bi + 1) and that for all items i, the number of buyers m,
exceeds cinvi (Z).

Roughly, Theorem 5.15 states that the social welfare attained by the smoothing algorithm on
polynomial production curve (x − 1)d is a constant approximation to the optimal social welfare
minus the production cost of the first d many copies of each item.

Proof of Theorem 5.15 : Summing the result of Lemma 5.14 over all items i ∈ I, we get∑
i∈I

P fi · c
inv
i (P fi ) ≤ 18 (d+ 1) (27/16)d+1 profit + 18

∑
i∈I

ci(Bi) ·Bi

Since for all items i, m ≥ cinvi (Z), hence for all p ≤ Z, cinvti (p) = cinvi (p). Hence the above result
is sufficient for us to apply the structural lemma, Lemma 2.1 and hence we get the desired result.

We would now like to prove Lemma 5.13. In preparation for that, we shall next prove a few
lemmas. The following lemma states for a price interval Jiq = [s, t), if at copy t, price is close to
the production cost, then so it is at copy s. This implies in particular that the price is close to
production curve for all copies in the price interval Jiq.

Lemma 5.16. For the polynomial production curve (x − 1)d (d ≥ 1), consider a price interval
Jiq = [s, t) created by the smoothing algorithm such that t ≥ Bi. If πi(t) < 3 · ci(t), then πi(s) <
3 · ci(s). In particular, for all x ∈ [s, t), πi(x) < 3 · ci(x).

Proof. First note that since t ≥ Bi, therefore, ci(t) ≥ ci(Bi). Also, from Lemma 5.1, we know
that πi(t) ≥ 3

2 ci(Bi). Hence, cinvi (πi(t)) ≥ Bi, and since cinvi () = cinvti (), therefore, it implies that
widthi(πi(t)) ≥ 1. The width and price of Jiq shall therefore be decided by Steps 5- 7.

Since πi(t) < 3·ci(t), therefore, πi(Jiq) = 3
2ci(t). Further, since πi(t) < 3·ci(t), hence widthi(πi(t)) =

bcinvti (πi(t))/Bic ≤ b(31/d · (t− 1) + 1)/Bic which implies that s ≥ t− 31/d · (t− 1)/Bi − 1.

Moreover, since πi(Jiq) = 3
2 ci(t), hence the condition πi(s) < 3·ci(s) is equivalent to 3

2ci(t) < 3·ci(s)
or ci(s) > ci(t)/2. Since ci(x) = (x − 1)d, therefore, we require (s − 1) > (t − 1)/21/d. Since
s ≥ t− 31/d · (t− 1)/Bi− 1, it suffices to have (t− 1)− 31/d · (t− 1)/Bi− 1 > (t− 1)/21/d which for
t ≥ Bi, is equivalent to demanding Bi ≥ 31/d/(1 − 1/(t − 1) − 1/21/d). By Equation 12, we have
t ≥ Bi ≥ 18(2d+ 1) and hence the inequality is satisfied.

Since for all x ∈ [s, t), πi(x) = πi(s) and ci(x) ≥ ci(s), hence, πi(s) < 3 · ci(s) implies that
∀x ∈ [s, t), πi(x) < 3 · ci(x).

Corollary 5.17 states that in case there is a copy in the range [Bi, b(2/3) `ic] in the range that is
the left end point of a price interval and has its price close to its cost, then for all copies from Bi
up till that copy, the price curve is close to the production curve.

Corollary 5.17. If at point x such that x ∈ [Bi, b(2/3) `ic], πi(x) < 3 · ci(x) and x is the left end
point of a price interval, then for all copies x′ in the range [Bi, x] (i.e. for all copies to the left of
x and to the right of Bi), πi(x

′) < 3 · ci(x′).

Proof. Consider a point x such that b(2/3) `ic > x > Bi and πi(x) < 3 · ci(x). Say x is the left
end point of the price interval Jiq. Let Ji q−1 = [r, x). By Lemma 5.16, for all copies y ∈ Ji q−1,
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πi(y) < 3 ci(y). If the left end point r of Ji q−1 is such that r ≤ Bi, then we have completed the
proof of our claim.

Else if the left end point r of Ji q−1 is such that r > Bi, we can repeat the argument above since we
have πi(r) < 3 ci(r) and r is the left end point of Ji q−1 and therefore inductively, we have proved
the claim.

Corollary 5.17 is sufficient to prove Lemma 5.13 in case we can show that a copy which is the left
end point of a price interval and has its price close to cost exists in the appropriate range. The
following lemma proves the existence of such a copy.

Lemma 5.18. For at least one price interval Jip to the right of the point b(2/3)`ic−(2d+1)·b`i/Bic,
it is the case that the left end point of Jip is marked close.

Proof. Denote the point b(2/3)`ic − (2d+ 1) · b`i/Bic by w1 and the point b(2/3)`ic − 2d · b`i/Bic
by w2. Let I be the interval [w1, w2].

We prove the claim by contradiction; assume that for all price intervals Jip to the right of w1, the
left end point of Jip is marked far. Since the width of any price interval is at most b`i/Bic and
|I| = b`i/Bic, hence there must be a price interval whose left end point, say τ , lies in the interval
I.

In order to the contradict the assumption, we need to prove that 3 ci(τ) > πi(τ). For this it suffices
to show that 3 · ci(w1) > πi(w2). This is because for any x ∈ [w1, w2], since production curve ci()
is non-decreasing, therefore, ci(x) ≥ ci(w1); also by Lemma 5.1(b), πi(x) ≤ πi(w2). Therefore,
3 · ci(w1) > πi(w2) implies that for any x in [w1, w2], 3 · ci(x) ≥ 3 · ci(w1) > πi(w2) > πi(x) and
hence in particular 3 ci(τ) > πi(τ).

We now prove that 3 · ci(w1) > πi(w2). We have

− ci(w1) ≥ (`i/2− (2d+ 1) · `i/Bi)d

This is because ci(w1) = (b(2/3)`ic − (2d + 1) · b`i/Bic − 1)d ≥ ((2/3)`i − 1 − (2d + 1) ·
`i/Bi − 1)d ≥ (`i/2− (2d+ 1) · `i/Bi)d where we use (2/3)`i − 2 ≥ `i/2 since by Equation 12,
`i ≥ 2(Bi + 1) ≥ 2 (18(2d+ 1) + 1) ≥ 110.

− πi(w2) = πi(Jiq) ≤ (2
3)2d · `di .

To see this, let w2 lie in price interval of Jiq. Note that Jiq cannot be the rightmost price
interval Jizi since the left end-point of Jizi is b(2/3) `ic and w2 < b(2/3)`ic. As all price
intervals Jiq′ to the right of Jiq have their left end point marked far, hence, in other words, all
price intervals between Jiq and Jizi are marked (F, F ). Since a price interval has size at most
b`i/Bic, therefore, there are at least 2d price intervals between Jiq and Jizi . By Lemma 5.9,
πi(w2) = πi(Jiq) ≤ (2

3)2d · `di .

To prove that 3 · ci(w1) > πi(w2), it suffices to have (2
3)2d · `di < 3 · (`i/2− (2d+ 1) · `i/Bi)d which

is equivalent to demanding (2
3)2 · 1

31/d
< 1

2 − (2d + 1) · 1
Bi

or Bi > (2d + 1)/(1
2 − (2

3)2 · 1
31/d

); by
Equation 12, Bi > 18(2d+ 1), and hence we have satisfied the desired inequality.

We now prove Lemma 5.13 which recall, roughly, states that apart from the ‘few’ left-most copies
and right-most copies, the price curve is close to the production curve for all copies.
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Proof of Lemma 5.13 : From Lemma 5.1(a), we can infer one side of the inequality i.e. for all x
in the desired range, πi(x) ≥ 3 ci(x)/2. Now for the other side of the inequality i.e. πi(x) < 3ci(x).

Denote the point b(2/3)`ic− (2d+ 1) · b`i/Bic by w. First we note that w lies to the right of Bi i.e.
w ≥ Bi. In order to see this, it suffices to show (2/3) `i− 1− (2d+ 1) · `i/Bi ≥ Bi. By Equation 12,
we have Bi ≥ 18(2d+1), and hence (2/3)`i−1−(2d+1) ·`i/Bi ≥ (2/3)`i−1−`i/18 = (11/18)`i−1.
And hence it suffices to have `i ≥ (18/11) · (Bi + 1) which by Equation 12 is true.

From Lemma 5.18, we know that there is at least one price interval Jip to the right of w whose
left end point say τ is marked close. Note that τ ≥ w ≥ Bi. Further since τ is the left end
point of a price interval, therefore, τ ≤ b(2/3)`ic. Hence, we have Bi ≤ τ ≤ b(2/3) `ic. Thus, by
Corollary 5.17, we get the desired result.

6 Profit Maximization

In this section we show how to combine an online algorithm for social welfare maximization in the
presence of increasing costs (such as those in Section 3) with an algorithm for a single-buyer profit
maximization (such as the algorithm in Balcan et al. (2008)) to yield an algorithm with strong
profit guarantees for any sequence of buyers under increasing costs. Specifically, suppose we are
given access to two algorithms:

1. a deterministic social-welfare maximizing algorithm A, which given production cost curves
{ci}i∈I , outputs pricing schemes {ωi(·)}i∈I such that on any sequence σ of buyers, the algo-
rithm’s social welfare satisfies

ρ ·W (A(σ)) + β ≥W (opt(σ)) (13)

We further assume that for every item i ∈ I and k ∈ N, ωi(k) ≥ ci(k) i.e. the price of any
copy of any item is at least as much as the production cost of that copy of the item.

2. a randomized single-buyer revenue maximization algorithm B, which outputs a non-negative
price vector τ for items i ∈ I and gives the guarantee that for any buyer b, with valuation
vb(),

µ · Eτ [
∑

i∈Sτ τi] + κ ≥ maxs⊆I vb(s) (14)

where maxs⊆I vb(s), the maximum valuation of the buyer over any set, is an upper bound on
maximum profit, and Sτ is the set of items bought by the buyer b when the price vector τ is
presented so that

∑
i∈Sτ τi is the profit generated from buyer b using price vector τ . Algorithm

B operates in a world with zero production costs, and may take as input a parameter T such
that maxS⊆I vb(S) < T ; the parameters µ, κ may be functions of T .

The main result of this section is

Theorem 6.1. Given a (ρ, β)-social welfare maximization algorithm (as defined in Equation (13))
and a (µ, κ)-single buyer profit maximization algorithm (as defined in Equation (14)), we can
construct a randomized profit-maximizing algorithm whose expected profit over any sequence σ of
buyers is at least

W (opt(σ))−O(β + κ · |σ|)
O(ρ+ µ)

.
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We now construct an algorithm C which uses A and B, and gives expected profit of approximately
W (opt(σ))
(2 ρ+8µ) (with some additive loss) over any sequence σ of buyers. The construction of algorithm
C and subsequent analysis heavily borrows ideas from a similar result proved in Awerbuch et al.
(2003). Our result can be seen as extension of their result to situations with production costs and
arbitrary valuations.

The Algorithm C: In case algorithm B requires an estimate T , such that maxS⊆I vb(S) < T ,
algorithm C takes as input a parameter T such that Umax < T , where Umax is defined as in (5).
The parameter T is used each time algorithm B is invoked by C.

On a sequence σ of buyers, for buyer j, let xji denote the number of copies of item i already sold
when buyer j walks in.

1. With probability 1/2, set tj = 0 and with probability 1/2, generate a random price vector τ
using algorithm B and set tj = τ .

2. Let the price of each item i be ωi(x
j
i + 1) + tj(i).

Simply put, algorithm C maintain a copy of algorithm A running in the background and keeps
updating A’s state with the sets buyers are buying. When buyer j walks in, with probability 1/2,
algorithm C presents the price vector as specified by the current state of A (determined by the
number of various items sold up till then), and with probability 1/2, adds a random price vector,
generated using B, to the price vector specified by A.

We now present an analysis of profit generated by algorithm C with the final result mentioned in
Theorem 6.1.

Analysis: For any allocation η : B → 2I (where η(j) denotes the set of items allocated to buyer
j),
∑

k<j:i∈ηk 1 denotes the number of copies of item i allocated to buyer k < j under η. Hence,

χjη(i) = ci(1 +
∑

k<j:i∈η(k) 1) denotes the cost of allocating a copy of item i to buyer j, given that
the buyers previous to her have received their allocations under η. The cost of allocating η(j) to
buyer j is therefore

∑
i∈η(j) χ

j
η(i) and the social welfare achieved by allocating η(j) to buyer j is

vj(η(j))−
∑

i∈η(j) χ
j
η(i).

Let ŝj = opt(j) be the set allocated to buyer j under the optimal allocation, opt, when she is part
of sequence σ. Denote by γ̂j the social welfare achieved by allocating ŝj to j, which is equal to

vj(ŝj)−
∑

i∈ŝj χ
j
opt(i).

Consider a particular run of algorithm C and for r < s, let tr:s denote the set of random choices tj
made for buyers j ∈ {r, r + 1, · · · , s}. Let sj , a random variable determined completely by t1:j−1,
be the set which buyer j would have bought if tj were chosen to be 0, and let γj be the social
welfare achieved by allocating sj to j. Note that sj may not be the set actually bought by buyer
j, depending on whether or not tj is zero.

Let pj , a random variable determined completely by t1:j , be the profit made by C from buyer j.
Therefore, the total profit made by algorithm C is

∑
j∈Q pj where Q is the set of buyers.

We partition the set of buyers Q into two sets:

1. Let Q1 be the set of buyers for whom γj ≥ 1
2 γ̂j .
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2. Let Q2 be the set of buyer for whom γj <
1
2 γ̂j .

The partition of Q into Q1 and Q2 is determined by the set of random choices t1:m. The following
observation follows from the definition of γ̂j .

Observation 6.2. The optimal profit is at most the optimal social welfare and that is
∑

j∈Q γ̂j.

We now state and prove Lemma 6.3 and Lemma 6.4 which bound the welfare made by the optimal
allocation for the buyer sets Q1 and Q2 respectively.

Note that for any j, the offsets t1:j−1 completely determine the bundles bought by buyers 1 through

j−1. Given t1:j−1, for convenience let us define πj(s) =
∑

i∈s ωi(x
j
i + 1). πj(s) is equal to the price

that would be offered to buyer j for set s, in case the offset tj were chosen to be zero.

Lemma 6.3 (Low welfare buyers). For any set of values t1:m,
∑

j∈Q2
γ̂j ≤ 2 ρ

∑
j∈Q1∪Q2

pj + 2β.

Proof. Consider any set of values t1:m. Consider a buyer j in Q2. sj is defined to be the utility-
maximizing set if tj were to be 0, therefore, vj(sj)− πj(sj) ≥ vj(ŝj)− πj(ŝj). Now, γj ≥ vj(sj)−
πj(sj) and γ̂j ≤ vj(ŝj). Since buyer j is in Q2, hence γj <

1
2 γ̂j and therefore we get

vj(ŝj)− πj(ŝj) ≤ vj(sj)− πj(sj) ≤ γj <
1

2
γ̂j (15)

which implies that

πj(ŝj) > vj(ŝj)−
1

2
γ̂j (16)

Let s′j be the actual set bought by buyer j from algorithm C.

Now consider the sequence σ′ composed of buyers j′ defined as follows

• for every buyer j in Q2, we introduce a buyer j′ who has non-zero valuation for exactly two
sets – she values set s′j at πj(s

′
j) and set ŝj at vj(ŝj)− 1

2 γ̂j , and

• for every buyer j in Q1, we introduce buyer j′, such that she is single-minded and has valuation
πj(s

′
j) for set s′j .

The sequence of buyers in σ′ is the natural ordering i.e. m′ < n′ if and only if m < n. It is not
difficult to verify that when algorithm A is run on sequence σ′,

1. for all j ∈ Q1, buyer j′ shall buy the set s′j from A,

2. for all j ∈ Q2, buyer j′1 shall buy the set s′j from A (and not the set ŝj by (16))

Consider the allocation η for sequence σ′, wherein for every j ∈ Q2, j′ is allocated set ŝj and rest of

the buyers are allocated nothing. The social welfare achieved by η is
∑

j∈Q2

(
vj(ŝj)− 1

2 γ̂j −
∑

i∈ŝj χ
j
η(i)

)
where for each j ∈ Q2, vj(ŝj) − 1

2 γ̂j is the value of buyer j′ for set ŝj and
∑

i∈ŝj χ
j
η(i) is the cost

of allocating that set. Now observe that for each j,
∑

i∈ŝj χ
j
η(i) ≤

∑
i∈ŝj χ

j
opt(i) i.e. the cost of

allocating the set ŝj to buyer j′ under η on sequence σ′ is at most the cost of allocating that
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set to the buyer j under opt on sequence σ. This is because for any prefix of buyers, η allocates
only at most as many copies of any item as opt for that prefix. Therefore, for each j ∈ Q2,
vj(ŝj)−

∑
i∈ŝj χ

j
η(i) ≥ vj(ŝj)−

∑
i∈ŝj χ

j
opt(i) = γ̂j , and therefore, vj(ŝj)− 1

2 γ̂j−
∑

i∈ŝj χ
j
η(i) ≥ 1

2 γ̂j .

Hence the allocation η achieves a social welfare of at least
∑

j∈Q2

1
2 γ̂j

The (ρ, β)-approximation guarantee of A should hold on σ′ as well and therefore using (13), and
the fact optimal welfare on σ′ is at least as much the welfare made through allocation η we have,∑

j∈Q2

1
2 γ̂j ≤ ρ ·

∑
j∈Q1∪Q2

(πj(s
′
j)− cj(s′j)) + β.

However, the profit pj made by C on sequence σ is πj(s
′
j) − cj(s′j) +

∑
i∈s′j

tj(i) and therefore in

particular, pj ≥ πj(s′j)−cj(s′j). Hence, we get the desired claim i.e.
∑

j∈Q2
γ̂j ≤ 2 ρ

∑
j∈Q1∪Q2

pj +
2β.

Lemma 6.4 (High welfare buyers). E
t1:m

[
∑

j∈Q1
γ̂j ] ≤ 8µ E

t1:m
[
∑

j∈Q1
pj ] + 4κ E

t1:m
[|Q1|].

Proof. For a buyer j in Q1, we know that γj = (vj(sj)− cj(sj)) ≥ 1
2 γ̂j .

• Either, (πj(sj) − cj(sj)) ≥ 1
2 γj ≥

1
4 γ̂j : With probability 1/2, we choose tj = 0, and by

definition of sj , we know that buyer j would buy set sj and therefore the profit from buyer
j, pj = (πj(sj)− cj(sj)) ≥ 1

2 γj ≥
1
4 γ̂j .

• Or, (πj(sj) − cj(sj)) < 1
2 γj . In this case, vj(sj) − πj(sj) ≥ 1

2 γj because (vj(sj) − πj(sj)) +
(πj(sj)− cj(sj)) = γj .

With probability 1/2, we set tj to be a random vector τ generated using algorithm B. Consider
a setting with zero production cost and a buyer b whose valuation vb() is given as ∀s ⊆
I, vb(s) = vj(s) − πj(s). For any τ and for any set s, buyer j and buyer b have the same
utility as we can see in the following equation:

vb(s)−
∑
i∈s

τi = vj(s)− πj(s)−
∑
i∈s

τi

Hence on being presented with price vector τ , buyer b shall the buy the same set as buyer
j, call the set Sτ . Therefore, the expected value of

∑
i∈Sτ τi is equal to the expected profit

made from buyer b which by (14) is

maxs⊆I vb(s)− κ
µ

.

Since we are in the case where (πj(sj) − cj(sj)) < 1
2 γj , therefore maxs⊆I vb(s) = vj(sj) −

πj(sj) ≥ 1
2 γj . Since for buyer j, we choose a random offset τ with probability 1/2, therefore,

the expected profit from buyer j is at least

maxs⊆I vb(s)− κ
2µ

≥
1
2 γj − κ

2µ
.

Therefore, taking both of the above cases into account, for any buyer j ∈ Q1,

E
tj |t1:j−1

[pj ] ≥
1
2 γj − κ

2µ
≥

1
4 γ̂j − κ

2µ
.
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Taking expectation over t1:j , we get

E
t1:j

[pj · I[j ∈ Q1]] ≥
E
t1:j

[(1
4 γ̂j − κ) · I[j ∈ Q1]]

2µ

where I[·] is the indicator function. The expectation can be extended to be over t1:m since t1:j

completely determine pj and I[j ∈ Q1]. Therefore,

E
t1:m

[pj · I[j ∈ Q1]] ≥
E
t1:m

[(1
4 γ̂j − κ) · I[j ∈ Q1]]

2µ

Using Linearity of expectation, we get the desired result.

We now state the main theorem which as we later show is equivalent to Theorem 6.1 and thereby
prove the claimed profit guarantee.

Theorem 6.5 (Profit Guarantee).∑
j∈Q

γ̂j ≤ (2 ρ+ 8µ)E[
∑
j∈Q

pj ] + 4κ |Q|+ 2β.

Proof. From Lemma 6.3, we get that for any set of values t1:m,
∑

j∈Q2
γ̂j ≤ 2 ρ

∑
j∈Q1∪Q2

pj + 2β
and therefore, E

t1:m
[
∑

j∈Q2
γ̂j ] ≤ 2 ρ E

t1:m
[
∑

j∈Q pj ] + 2β.

From Lemma 6.4, we get

E
t1:m

[
∑
j∈Q1

γ̂j ] ≤ 8µ E
t1:m

[
∑
j∈Q1

pj ] + 4κE[|Q1|].

Hence using Linearity of Expectation, we get∑
j∈Q

γ̂j ≤ (2 ρ+ 8µ) E
t1:m

[
∑
j∈Q

pj ] + 4κ |Q|+ 2β.

Proof of Theorem 6.1 : Recall that the optimal social welfare, and hence the optimal profit, on
sequence σ is upper-bounded by

∑
j∈Q γ̂j (Observation 6.2), while the expected profit generated

by algorithm is C is given by E[
∑

j∈Q pj ]. Hence Theorem 6.5 is equivalent to result quoted in
Theorem 6.1.

Remark 6.6. 1. In case the social-welfare maximizing algorithm A takes estimate of Umax:
Suppose the estimate given to algorithm C (which passes it on to the copy of A running in
the background) is that Umax ∈ [δ Z, Z). Note that the only place where we use the guarantee
is in Lemma 6.3. In the proof, in the stream σ′, add a fake δ Z- valuation buyer at the end
of the stream to make the guarantee hold. The profit guarantee changes to∑

j∈Q
γ̂j ≤ (2 ρ+ 8µ)E[

∑
j∈Q

pj ] + 4κ |Q|+ 2β + 2 ρ δ Z
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2. Balcan et al. (2008) give a single-buyer profit maximization algorithm under zero production
cost, which with slight modification, given a parameter T > Umax, has values of parameters
κ = T

2mn and µ = O(log(mn)). This profit maximization algorithm picks a uniform price on
a geometric scale for all items and can be combined with either of the social welfare maximizing
algorithms in this paper to give a O(log(mn))-profit maximizing algorithm with some additive
loss.
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Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for utilitarian mechanism
design. In STOC, 2005.

Tanmoy Chakraborty, Zhiyi Huang, and Sanjeev Khanna. Dynamic and non-uniform pricing strategies for
revenue maximization. In FOCS, 2009.

Shahar Dobzinski. Two randomized mechanisms for combinatorial auctions. In APPROX/RANDOM. 2007.

Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for combinatorial auctions
with complement-free bidders. Math. of OR, 35(1).

Jason Hartline and Anna Karlin. Profit maximization in mechanism design. In Algorithmic Game Theory.
Cambridge University Press, 2007.

Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear programming. In
FOCS, 2005.

B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal utilities. Games
and Economic Behavior, 2006.

29



A Some Illustrative Examples

A.1 Some ‘natural’ pricing schemes

We give some natural pricing schemes and instances where they fail to achieve good social welfare.

A.1.1 Pricing at Cost

While the algorithm of pricing at cost (i.e., setting π(k) = c(k)) gives an optimal welfare for the
unlimited supply setting (where production costs are zero), it is not a good algorithm even for
“simple” cost curves. E.g., for a single item with linear costs c(k) = k, consider a sequence of m
buyers with the ith buyer having value i for i ∈ {1, . . . ,m}, followed by m buyers with value m
each. Pricing at cost will sell to the first m buyers and give zero welfare for them, after which the
production cost will be too high to sell any further copies. In contrast, the optimal solution is to
sell to the second set of m buyers with welfare m2 − m(m+1)

2 = Ω(m2).

A.1.2 Pricing at Twice the Cost

Another natural algorithm is to price at twice (or any fixed multiple) of the cost of each item.
However, while this can be shown to perform well for linear and low-degree polynomial cost func-
tions, it performs poorly for the case of logarithmic costs. Indeed, consider a single item with
production cost c(x) = log x, and suppose we price the ith item at cost π(i) = 2 log i. Suppose
the first m buyers have valuations 2 log 1, 2 log 2, . . . , 2 logm respectively, and are followed by m2

buyers with valuation 2 logm = logm2. The algorithm would sell to the first m buyers, getting a
social welfare of

∑m
i=1(2 log i− log i) = O(m logm), after which the cost would be too high for the

remaining buyers. In contrast, optimum would sell to the last m2 buyers, and get a social welfare

of
∑m2

i=1(logm2 − log i) = Ω(m2).

A.2 Pricing at Twice the Index

Here is an example where twice-the-index algorithm fails to produce good social welfare—e.g.,
consider the limited supply-like setting where c(k) = 0 for k ≤ B, and c(k) = V for k > B.
Consider sending in B buyers with valuation zero, followed by B buyers with valuation V − ε.
Twice-the-index prices the first B/2 copies at zero, and the rest at V , whence we get zero welfare,
whereas the optimal welfare of B(V − ε) is achieved by selling to just the later B buyers.

A.3 The Necessity of Additive Loss

If we do not have an estimates for W (opt), we give a trade-off between the additive and multiplica-
tive loss (even for a single item), for any algorithm where the prices are at least the production
cost.

Lemma A.1. With no estimate of W (opt) it is impossible for a deterministic algorithm to give a
purely multiplicative guarantee i.e. a guarantee of the form

W (alg) ≥W (opt)/α

for any finite α.
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Proof. Suppose we have an algorithm A that gets such a α-approximation for all inputs. Consider
a single item with production cost function c(k) = k. Suppose the price of the first copy is set to
any 1 + θ, for θ > 0. Then we can send in a single buyer with valuation 1 + θ − ε, getting a zero
social welfare, whereas the optimal welfare is θ − ε > 0. On the other hand, if the price of the
first copy is 1, then first send a buyer with value 1, and then a buyer with value 1.9—the optimal
welfare of 0.9 is achieved by selling to the second buyer, but we only sell to the first buyer, get zero
welfare again.

A.3.1 Some Quantitative Trade-offs

Lemma A.2. For any deterministic pricing algorithm (in a single item setting) acting on pro-
duction costs c() and that price copies at at least their production cost, to give the guarantee

W (alg) ≥ (W (opt)−∆)/α, it is necessary that α ≥ c(2)−c(1)
∆ − 1.

Proof. Let π(1) = c(1) + γ. Note that γ ≤ ∆ because otherwise a buyer sent in with valuation
c(1) + γ − ε would buy nothing and hence W (alg) = 0 while W (opt) = γ − ε and therefore
W (alg) ≥ (W (opt)−∆)/α would be false.

Now consider a sequence of two buyers, the first with valuation c(1) + γ and the second with
valuation c(2)− ε. The first buyer will buy the first copy. Since the price of second copy is at least
c(2), hence the second buyer won’t buy. Hence, W (alg) = γ while W (opt) = c(2) − c(1) − ε. In
such a scenario, for the guarantee to hold we require that γ ≥ (c(2)− c(1)−ε−∆)/α which implies
that γ α + ∆ ≥ c(2) − c(1) − ε. Noting that γ ≤ ∆ and that the inequality needs to hold for any
ε ≥ 0, the claim follows.

The following corollary follows immediately.

Corollary A.3. For production curves c(x) = xd, for α = 4 d, ∆ = Ω(2d/d).

B Variant of Structural Lemma

We now prove a variant of the structural theorem. Define cinvti (p) = min{cinvi (p),m, cinvi (Umax)}
where m is the number of buyers and for a given set of buyers B and items I,

Umax = max
b∈B

max
T⊆I

(
vb(T )−

∑
i∈T

ci(1)

)

is the maximum welfare any single buyer can achieve.

Corollary B.1. For a pricing algorithm alg with non-decreasing price functions πi suppose there
exists some α ≥ 1 and β ≥ 0 such that for every allowed set of values of the final prices P fi ,∑

i∈I
∑cinvti (P fi )

k=1 (P fi − ci(k)) ≤ α
∑

i∈I profiti + β , (17)

then on every instance of buyers W (alg) ≥ 1
α(W (opt)− β) .

Proof Sketch: Note that in the proof of Lemma 2.1 just after Equation (3), we argued that

λi ≤ cinvi (P fi ). Instead of summing all the way to cinvi (P fi ), we could stop the summation at

min{cinvi (P fi ),m, cinvi (Umax)}. Indeed, this is because
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• λi ≤ m: each buyer wants at most one copy of each item, so at most m copies of item i can
be allocated in the optimal solution.

• λi ≤ cinvi (Umax): each copy beyond cinvi (Umax) has cost strictly greater than Umax; allocation
of any such copy can only decrease the social welfare.

C Some observations and results for Section 5

We now state two observations which are easy to prove.

Observation C.1. widthi(p) is non-decreasing in p.

Observation C.2. Assuming the parameter Z > 0, for every copy x, the price set by the algorithm,
πi(x) > 0.

Claim C.3. In the analysis of the smoothing algorithm, it is sufficient to consider only those items
that have `i ≥ Bi.

Proof Sketch: We would like to show that we can assume `i ≥ Bi ≥ 12 without loss of generality.
We first show that Bi ≥ 12. Recall that `i := min{cinvi (Z),m} and Bi = d12 log(4n`i/ε)e. We
can assume that Umax > 0, so Z > 0, and since ci(1) = 0, hence `i ≥ 1; in turn this implies that
Bi ≥ 12.

Now, if the minimum `i < Bi because m is small, we can always add in dummy buyers, this does
not change any of the arguments. Else, it must be the case that `i = cinvi (Z) < Bi, which means
ci(Bi) > Z ≥ Umax. We claim that we can just drop all such items from the instance, and run our
algorithm on the remaining items, with guarantees identical to those in Theorem 5.4.

Indeed, how many copies of item i could we possibly sell in the optimal solution? At most `i, since
after that its cost is at least ci(`i) ≥ Z, too high for opt to allocate to anyone without decreasing the
social welfare as the cost exceeds the valuation. Therefore, since at most `i copies of such an item
can be allocated, so ignoring this item entirely can drop W (opt) by at most `i ·Umax < Bi · ci(Bi).
Hence, dropping all such items implies that the remaining set of items I ′ (and the original set of
buyers) have an modified optimal welfare of W (opt′) ≥W (opt)−

∑
i∈I\I′ Bi · ci(Bi). For this new

instance, Theorem 5.4 gives a welfare of

W (alg) ≥
W (opt′)/2−

∑
i∈I′ Bi · ci(Bi)

12 maxi∈I′ Bi
≥
W (opt)/2−

∑
i∈I Bi · ci(Bi)

12 maxi∈I Bi
(18)

Hence, we can assume `i ≥ Bi ≥ 12 without loss of generality.

Lemma C.4. The number of price intervals, zi ≥ 3

Proof. zi 6= 1 since the first time the algorithm checks for condition x > 1 in Step 3, it evaluates to
true because x is set to b2

3`ic by Step 2 and since by Equation (9), `i > 3, therefore x = b2
3 `ic ≥

`i/3 > 1. Hence, the algorithm creates at least one price interval other than [b2
3 `ic,∞).

We now prove that zi is at least 3. We prove by contradiction. If it were the case zi = 2, then it
implies that the algorithm terminates the second time it checks for the condition x > 1 in Step 3.
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As observed earlier, x can be set to 1 either by Step 5 or by Step 11. To disambiguate let the
value of x be x1 and x2 the first and second time respectively, the while loop condition at Step 3
is checked. We know from Step 2, that x1 = b2

3 `ic. For zi to be 2, we require x2 to be 1.

• If x2 is set to 1 by Step 11, it implies that the condition widthi(πi(x1)) ≥ 1 in Step 4 must
have evaluated to false. However, πi(x1) = Z (by Step 1) and therefore, widthi(πi(x1)) =
bcinvti (Z)/Bic. Now cinvti (Z) = min{cinvi (Z), `i} and `i = min{cinvi (Z),m} and therefore,
cinvti (Z) = `i. Hence, widthi(πi(x1)) = b`i/Bic ≥ 1 since `i ≥ Bi by Equation (9). Hence, x2

could not have been set to 1 by Step 11.

• The other case is that x2 is set to 1 by Step 5. This implies that max{x1−widthi(πi(x1)), 1} =
1. However, x1 − widthi(πi(x1)) = b2

3 `ic − b`i/Bic ≥ `i/3 − `i/Bi ≥ 2 which is satisfied due
to Equation (9). Therefore, x2 > 2 and hence could not have been set to 1 by Step 5.

This proves the contradiction.

Proposition C.5 (The left-most interval). The following facts hold for the left-most interval Ji1:

a. If the procedure terminated through Step 5 creating Ji1 = [1, s), then |Ji1| ≤ widthi(πi(s)) =
widthi(πi(Ji 2)).

b. If the procedure terminated through Step 11, then πi(Ji1) = πi(Ji2).

Proof. If the algorithm terminated through Step 5, then by construction we have |Ji1| ≤ widthi(πi(s)) =
widthi(πi(Ji2)). If the algorithm terminated through Step 11, then we have no non-trivial bound
on |Ji1|, however, by Step 10, we have πi(Ji1) = πi(Ji2).

Proof of Lemma 5.1 :

• Part (a): We first prove that for Jiq = [r, s), πi(Jiq) >
3
2ci(s). First consider the case q 6= 1.

– either πi(s) ≥ 3 ci(s), in which case,

πi(Jiq) = ci(s) +
πi(s)− ci(s)

2
=
πi(s) + ci(s)

2
≥ 3 ci(s) + ci(s)

2
= 2 ci(s).

– or, πi(s) < 3 ci(s), in which case,

πi(Jiq) = ci(s) +
ci(s)

2
=

3

2
ci(s).

In both cases, the inequality πi(Jiq) ≥ 3
2ci(s) is true. Now for the case q = 1: the above argu-

ment also holds if the algorithm terminated in Step 5. If however the algorithm terminated
in Step 11, then let Ji1 = [1, r) and Ji2 = [r, s) (Ji2 6= Jizi by Lemma C.4). The observations

1. πi(Ji1) = πi(Ji2) implied by Proposition C.5(b),

2. πi(Ji2) ≥ 3
2 ci(s), which is at least 3

2 ci(r), the first implied by the above argument for
q 6= 1 and the second implied by monotonicity of ci().

together imply the result for Ji1.

Having proved that πi(Jiq) >
3
2ci(s), note that since ci() is non-decreasing, therefore we have

ci(x) ≤ ci(s) for all x ∈ [r, s), so πi(x) = πi(Jiq) ≥ 3
2ci(s) ≥

3
2ci(x) which proves the second

part of the claim.
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• For part (a’), convexity implies that ci(b2
3 `ic) ≤

2
3 ci(`i). By the definition of `i, this is at

most 2
3 Z. On the other hand, πi(b2

3 `ic) = πi(Jizi) = Z. Therefore, πi(b2
3 `ic) ≥

3
2 ci(b

2
3 `ic).

• For part (b), first consider the case where q /∈ {1, zi−1}, where Jiq = [r, s) and Ji q+1 = [s, t).

– Either πi(s) ≥ 3 ci(s): then

πi(Jiq) = ci(s)+
πi(s)− ci(s)

2
=
πi(s) + ci(s)

2
≤
πi(s) + 1

3 πi(s)

2
=

2

3
πi(s) =

2

3
πi(Ji q+1) .

Also, πi(Jiq) = πi(s)+ci(s)
2 ≥ πi(s)

2 = 1
2πi(Ji q+1). Hence, πi(Jiq) ≤ πi(Ji q+1) ≤ 2πi(Jiq).

– Or πi(s) < 3 ci(s): then

πi(Jiq) = ci(s) +
ci(s)

2
=

3

2
ci(s) ≤

3

2
ci(t) ≤ πi(t) = πi(Ji q+1)

where the first inequality follows from the monotonicity of ci, and the second from
Lemma 5.1(a). Further, πi(Jiq) = 3

2 ci(s) > 1
2πi(s) = 1

2πi(Ji q+1). Hence, we get
πi(Jiq) ≤ πi(Ji q+1) ≤ 2πi(Jiq).

Now for the case of Ji1 (q = 1). Note that from Lemma C.4, zi ≥ 3. Therefore in particular,
Ji2 6= Jizi . The analysis above for Jiq also holds for Ji1 if the algorithm terminated in Step 5.
Otherwise, by Proposition C.5(b), πi(Ji1) = πi(Ji2) in which case the both the inequalities
trivially follow.

Finally for the case of q = zi−1. Let Ji zi−1 = [r, s) and Ji zi = [s,∞). Note that since s is left
end point of Jizi , hence s = b2

3`ic. Either πi(s) ≥ 3 ci(s) in which case the analysis above for
q /∈ {1, zi− 1} holds for q = zi− 1 as well and shows that πi(Ji zi−1) ≤ πi(Jizi) ≤ 2πi(Ji zi−1);
or πi(s) < 3 ci(s), in this case

πi(Ji zi−1) = ci(s) +
ci(s)

2
=

3

2
ci(s) ≤ πi(s) = πi(Jizi)

where the second inequality follows from Lemma 5.1(a’).

• Part (c): By construction (Step 5-7), for all price intervals Jiq = [r, s) (except maybe Ji1 and
Jizi) we have |Jiq| = widthi(πi(s)). Since s ∈ Ji q+1, therefore, πi(s) = πi(Ji q+1) and hence
we have |Jiq| = widthi(πi(s)) = widthi(πi(Ji q+1)).

C.1 Proofs from Section 5.4.2 for convex cost curves

Lemma C.6. If the pricing algorithm terminated through Step 5, then for any Jiq, it is true that
for all q′ < q, |Jiq′ | < widthi(πi(Jiq)).

Proof. Consider any Jiq. By Lemma 5.1(b), we know that for q′ < q, πi(Jiq′) ≤ πi(Ji q′+1) ≤ πi(Jiq).
Hence, for all price intervals q′ < q and q′ 6= 1, by Lemma 5.1(c), |Jiq′ | = widthi(πi(Ji q′+1)) ≤
widthi(πi(Ji q)) where the last inequality follows by Observation C.1. Further, by Proposition C.5(a),
|Ji1| ≤ widthi(πi(Ji2)) ≤ widthi(πi(Ji q)). This finishes the proof.
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Proof of Lemma 5.11 : Note that πi(Jizi) = Z and so cinvti (πi(Jizi)) = `i. Consequently,
widthi(πi(Jizi)) ≤ `i

Bi
. Since the algorithm terminated through Step 5, hence by Lemma C.6, for all

q′ < zi, |Jiq′ | ≤ widthi(πi(Jizi)) ≤ `i
Bi

.

Since we have b2 · `i/3c − 1 copies to the left of Jizi (which due to Equation (9) is at least `i/3),

therefore, the number of intervals Jiq with q < zi is least `i/3
`i/Bi

= Bi/3.

D Translating the Cost Curve

We show that it is fine to translate the cost functions ci() to satisfy ci(1) = 0.

Lemma D.1. Given a pricing algorithm A′ for production cost curves {c′i()}, which for any set of
buyers achieves a guarantee of (W (opt) − β)/α, we can create a pricing algorithm A for the cost
curves ci(x) = c′i(x) + δi1x>0 for constants δi ≥ 0, that achieves the same guarantees.

Moreover, in case A′ needs an estimate of maxb∈BmaxS⊆I vb(S), A takes as input an estimate of

max
b∈B

max
S⊆I

(vb(S)−
∑
i∈S

δi).

Proof. The algorithm A just uses A′ to generate the price functions π′i(), and sets πi(x) = π′i(x) +
δi1x>0. To show the social welfare guarantee for A, we consider any sequence of buyers σ =
b1, b2, . . . , bm for which the optimal welfare is W (opt(σ, {ci})).
Below, we show how to construct another sequence of fake buyers σ′ = b′1, b

′
2, . . . , b

′
m, and prove

that

W (opt(σ, {ci})) = W (opt(σ′, {c′i})) (19)

W (A(σ, {ci})) = W (A′(σ′, {c′i})) (20)

Now the algorithm A′ gives the guarantee that for all σ′,

W (A′(σ′, {c′i})) ≥
1

α
(W (opt(σ′, {c′i}))− β)

we would get the same guarantee for A, and hence get the proof. The definition of the fake buyers
b′i is natural: their valuation function is v′i(S) = vi(S)−

∑
i∈S δi—note that fake buyers may have

non-monotone valuation functions, and they may also have negative values for some sets, but this
is not a concern. Now to prove (19) and (20).

Claim D.2. For any j ∈ [m], buyer bj ∈ σ buys the same set from A as b′i ∈ σ′ buys from A′.

Proof. We prove this by induction. The base case is j = 1. Utility function u1(·) for buyer b1 is
∀S ⊆ I, u1(S) = v1(S)−

∑
i∈S πi(1) while the utility function u′1(·) for buyer b′1 is ∀S ⊆ I, u′1(S) =

v′1(S)−
∑S

i=1 π
′
i(1). Using definition of v′1 and πi we get

∀S ⊆ I, u′1(S) = v′1(S)−
∑
i∈S

π′i(1) = v1(S)−
∑
i∈S

ci(1)−
∑
i∈S

π′i(1) = v1(S)−
∑
i∈S

πi(1) = u1(S).

Hence, b1 and b′1 have the same utility maximizing set and therefore they buy the same set of items.
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Assume the induction hypothesis is true for j < k. We prove that buyer bk and b′k buy the same set
of items. Since for all j < k, buyers bj and b′j bought the same set of items, therefore, the number
of copies xi and x′i of item i sold by A and A′ when bk and b′k arrive are equal. Therefore,

∀S ⊆ I, u′k(S) = v′k(S)−
∑
i∈S

π′i(x
′
i+1) = vk(S)−

∑
i∈S

ci(1)−
∑
i∈S

π′i(xi+1) = vi(S)−
∑
i∈S

πi(xi+1) = ui(S).

Hence, bk and b′k buy the same set of items. This completes the step of induction. Hence proved.

Define an allocation vector Xij ∈ {0, 1}n×m so that Xij = 1 ⇐⇒ buyer bj is assigned a copy of
item i.

Claim D.3. Any allocation vector X achieves equal social welfare on buyer sequence σ with cost
functions {ci}, and on buyer sequence σ′ with cost functions {c′i}.

Proof. Denote by yi the number of copies of item i allocated under the scheme Xij ; hence yi =∑
j Xij . Also, let Sj ⊆ U denote the set of items allocated to jth buyer.

Note that W (X(σ, {ci})) =
∑

j vj(Sj) −
∑

i∈I
∑yi

k=1 ci(k) and W (X(σ′, {c′i})) =
∑

j v
′
j(Sj) −∑

i∈I
∑yi

k=1 c
′
i(k). Using definition of v′i() and πi() we get

W (X(σ, {ci})) =
∑
j

v′j(Sj)−
∑
i∈I

yi∑
k=1

c′i(k)

=
∑
j

(
vj(Sj)−

∑
i∈Sj

ci(1)
)
−
∑
i∈I

yi∑
k=1

c′i(k)

=
∑
j

vj(Sj)−
∑
j

∑
i∈I

Xij · ci(1)−
∑
i∈I

yi∑
k=1

c′i(k)

=
∑
j

vj(Sj)−
∑
i∈I

yi · ci(1)−
∑
i∈I

yi∑
k=1

c′i(k)

=
∑
j

vj(Sj)−
∑
i∈I

yi∑
k=1

(ci(1) + c′i(k))

=
∑
j

vj(Sj)−
∑
i∈I

yi∑
k=1

ci(k) = W (X(σ′, {c′i}))

which proves the claim.

Claim D.3 says having the same allocations in the two settings achieves the same social welfare;
this proves (19). Moreover, by Claim D.2, the allocation made by A to buyer sequence σ is the
same as that made by A′ to buyers σ′; this proves (20).

Finally note that in case A′ needs an estimate of maxb′∈BmaxS⊆I v
′
b(S) for its guarantee to hold,

then A passes the estimate of maxb∈BmaxS⊆I(vb(S)−
∑

i∈S δi since by definition of v′b both quan-
tities are equal.
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