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In this paper we demonstrate that, ignoring computational constraints, it is possible to release synthetic
databases that are useful for accurately answering large classes of queries while preserving differential
privacy. Specifically, we give a mechanism that privately releases synthetic data useful for answering a
class of queries over a discrete domain with error that grows as a function of the size of the smallest net
approximately representing the answers to that class of queries. We show that this in particular implies a
mechanism for counting queries that gives error guarantees that grow only with the VC-dimension of the
class of queries, which itself grows at most logarithmically with the size of the query class.

We also show that it is not possible to release even simple classes of queries (such as intervals and their
generalizations) over continuous domains with worst-case utility guarantees while preserving differential
privacy. In response to this, we consider a relaxation of the utility guarantee and give a privacy preserving
polynomial time algorithm that for any halfspace query will provide an answer that is accurate for some
small perturbation of the query. This algorithm does not release synthetic data, but instead another data
structure capable of representing an answer for each query. We also give an efficient algorithm for releas-
ing synthetic data for the class of interval queries and axis-aligned rectangles of constant dimension over
discrete domains.

1. INTRODUCTION
As large-scale collection of personal information becomes more commonplace, the prob-
lem of database privacy is increasingly important. In many cases, we might hope to
learn useful information from sensitive data (for example, we might learn a correla-
tion between smoking and lung cancer from a collection of medical records). However,
for legal, financial, or moral reasons, administrators of sensitive datasets often are not
able to release their data in raw form. Moreover, it is far from clear whether or not
these data curators can allow analysts access to the data in any form if they are to pro-
vide a rigorous measure of privacy to the individuals whose data is contained in the
data sets. If those with the expertise to learn from large datasets are not the same as
those who administer the datasets, what is to be done? In order to study this problem
theoretically, it is important to quantify what exactly we mean by “privacy.”

A series of recent papers [DN04; BDMN05; DMNS06] formalizes the notion of dif-
ferential privacy. Informally, an algorithm satisfies differential privacy if modifying a
single database element does not change the probability of any outcome of the priva-
tization mechanism by more than some small amount (see Definition 2.1 for a formal
definition). The definition is intended to capture the notion that “distributional infor-
mation is not private”: that it is acceptable to release information that is encoded in ag-
gregate over the dataset, but not information that is encoded only in the single record
of an individual. In other words, we may reveal that smoking correlates to lung cancer,
but not that any individual has lung cancer. Individuals may submit their personal in-
formation to the database secure in the knowledge that they may later plausibly claim
any other fake set of values, as changing one person’s entries would produce nearly the
same probability distribution over outputs.

Lower bounds of Dinur and Nissim [DN03] imply that one cannot hope to be able
to usefully answer large numbers of arbitrary queries to arbitrarily low error. In this
paper, motivated by learning theory, we propose the study of privacy-preserving mech-
anisms that are useful for answering all queries in a particular class (such as all
conjunction queries or all halfspace queries), that is large but specified a-priori. In
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particular, we focus on counting queries of the form, “what fraction of the database
entries satisfy predicate ϕ?” and say that a sanitized output is useful for a class C if
the answers to all queries in C are accurate up to error of magnitude at most α.

Building on the techniques of McSherry and Talwar and Kasiviswanathan et
al. [MT07; KLN+08], we show that for discretized domains, for any concept class that
admits an α-net Nα, it is possible to privately release synthetic data that is useful for
the class, with error that grows proportionally to the logarithm of the size of Nα. As
a consequence, we show that it is possible to release data useful for a set of count-
ing queries with error that grows proportionally to the VC-dimension of the class of
queries. The algorithm is not in general computationally efficient. We are able to give
a different algorithm that efficiently releases synthetic data for the class of interval
queries (and more generally, axis-aligned rectangles in fixed dimension) that achieves
guarantees in a similar range of parameters.

Unfortunately, we show that for non-discretized domains, under the above definition
of usefulness, it is impossible to publish a differentially private database that is useful
in the worst case for even quite simple classes such as interval queries. We next show
how, under a natural relaxation of the usefulness criterion, one can release informa-
tion that can be used to usefully answer (arbitrarily many) halfspace queries while
satisfying privacy. In particular, instead of requiring that useful mechanisms answer
each query approximately correctly, we allow our algorithm to produce an answer that
is approximately correct for some nearby query. This relaxation is motivated by the
notion of large-margin separators in learning theory [AB99; Vap98; SS02]; in particu-
lar, queries with no data points close to the separating hyperplane must be answered
accurately, and the allowable error more generally is a function of the fraction of points
close to the hyperplane.

1.1. Prior and Subsequent Work
1.1.1. Prior Work. Recent work on theoretical guarantees for data privacy was initi-

ated by [DN03]. The notion of differential privacy, finally formalized by [DMNS06;
Dwo06], separates issues of privacy from issues of outside information by defining pri-
vacy as indistinguishability of neighboring databases. This captures the notion that
(nearly) anything that can be learned if your data is included in the database can
also be learned without your data. This notion of privacy ensures that users have
very little incentive to withhold their information from the database. The connection
between data privacy and incentive-compatibility was formalized by McSherry and
Talwar [MT07].

Much of the initial work focused on lower bounds. Dinur and Nissim [DN03] showed
that any mechanism that answers substantially more than a linear number of subset-
sum queries with error o(

√
n) yields what they called blatant non-privacy – i.e. it allows

an adversary to reconstruct all but a o(1) fraction of the original database. They also
show that releasing the answers to all subset sum queries with error o(n) leads to
blatant non-privacy. In this paper, we use a similar argument to show that the accuracy
for mechanisms that restrict themselves to fixed classes of queries must depend on the
VC-dimension of those classes. Dwork et al. [DMT07] extend this result to the case in
which the private mechanism can answer a constant fraction of queries with arbitrary
error, and show that still if the error on the remaining queries is o(

√
n), the result is

blatant non-privacy. Dwork and Yekhanin [DY08] give further improvements. These
results easily extend to the case of counting queries which we consider here.

Dwork et al. [DMNS06], in the paper that defined differential privacy, show that
releasing the answers to k low sensitivity queries (a generalization of the counting
queries we consider here) with noise drawn independently from the Laplace distri-
bution with scale k/ε preserves ε-differential privacy. Unfortunately, the noise scales
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linearly in the number of queries answered, and so this mechanism can only answer a
sub-linear number of queries with non-trivial accuracy. Blum et al. [BDMN05] consider
a model of learning and show that concept classes that are learnable in the statisti-
cal query (SQ) model are also learnable from a polynomially sized dataset accessed
through an interactive differential-privacy-preserving mechanism. We note that such
mechanisms still access the database by asking counting-queries perturbed with in-
dependent noise from the Laplace distribution, and so can still only make a sublinear
number of queries. In this paper, we give a mechanism for privately answering count-
ing queries with noise that grows only logarithmically with the number of queries
asked (or more generally with the VC-dimension of the query class). This improvement
allows an analyst to answer an exponentially large number of queries with non-trivial
error, rather than only linearly many.

Most similar to this paper is the work of Kasiviswanathan et al. [KLN+08] and
McSherry and Talwar [MT07]. Kasiviswanathan et al. study what can be learned pri-
vately when what is desired is that the hypothesis output by the learning algorithm
satisfies differential privacy. They show that in a PAC learning model in which the
learner has access to the private database, ignoring computational constraints, any-
thing that is PAC learnable is also privately PAC learnable. We build upon the tech-
nique in their paper to show that in fact, it is possible to privately release a dataset
that is simultaneously useful for any function in a concept class of polynomial VC-
dimension. Kasiviswanathan et al. also study several restrictions on learning algo-
rithms, show separation between these learning models, and give efficient algorithms
for learning particular concept classes. Both our paper and [KLN+08] rely on the ex-
ponential mechanism, which was introduced by McSherry and Talwar [MT07]

1.1.2. Subsequent Work. Since the original publication of this paper in STOC 2008
[BLR08] there has been a substantial amount of follow up work. A sequence of papers
by Dwork et al. [DNR+09; DRV10] give a non-interactive mechanism for releasing
counting queries with accuracy that depends in a similar way to the mechanism pre-
sented in this paper on the total number of queries asked, but has a better dependence
on the database size. This comes at the expense of relaxing the notion of ε-differential
privacy to an approximate version called (ε, δ)-differential privacy. The mechanism
of [DRV10] also extends to arbitrary low-sensitivity queries rather than only count-
ing queries. This extension makes crucial use of the relaxation to (ε, δ)-privacy, as re-
sults such as those given in this paper cannot be extended to arbitrary low-sensitivity
queries while satisfying ε-differential privacy as shown recently by De [De11].

Roth and Roughgarden [RR10] showed that bounds similar to those achieved in this
paper can also be achieved in the interactive setting, in which queries are allowed to
arrive online and must be answered before the next query is known. In many applica-
tions, this gives a large improvement in the accuracy of answers, because it allows the
analyst to pay for those queries which were actually asked in the course of a compu-
tation (which may be only polynomially many), as opposed to all queries which might
potentially be asked, as is necessary for a non-interactive mechanism. Hardt and Roth-
blum [HR10] gave an improved mechanism for the interactive setting based on the
multiplicative weights framework which achieves bounds comparable to the improved
bounds of [DRV10], also in the interactive setting. An offline version of this mechanism
(constructed by pairing the online mechanism with an agnostic learner for the class of
queries of interest) was given by [GHRU11; HLM12]. Gupta, Roth, and Ullman uni-
fied the online mechanisms of [RR10; HR10] into a generic framework (and improved
their error bounds) by giving a generic reduction from online learning algorithms in
the mistake bound model to private query release algorithms in the interactive setting
[GRU11]. [GRU11] also give a new mechanism based on this reduction that achieves
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improved error guarantees for the setting in which the database size is comparable to
the size of the data universe.

There has also been significant subsequent attention paid to the specific problem of
releasing the class of conjunctions (a special case of counting queries) with low error
using algorithms with more efficient run-time than the one given in this paper. Gupta
et al. [GHRU11] give an algorithm which runs in time polynomial in the size of the
database, and releases the class of conjunctions to O(1) average error while preserving
differential privacy. Hardt, Rothblum, and Servedio [HRS11] give an algorithm which
runs in time proportional dk (for databases over a data universe X = {0, 1}d) and
releases conjunctions of most k variables with worst-case error guarantees. Their algo-
rithm improves over the Laplace mechanism (which also requires run-time dk) because
it only requires that the database size be proportional to d

√
k (The Laplace mechanism

would require a database of size dk). As a building block for this result, they also give
a mechanism with run-time proportional to d

√
k which gives average-case error guar-

antees.
Range queries—which extend the class of constant-dimensional interval queries

which we consider in this paper—have also subsequently received substantial atten-
tion [XWG10; HRMS10; LHR+10; LM11; LM12a; LM12b; MN12; HLM12].

There has also been progress in proving lower bounds. Dwork et al. [DNR+09] show
that in general, the problem of releasing synthetic data giving non-trivial error for
arbitrary classes of counting queries requires run-time that is linear in the size of the
data universe and the size of the query class (modulo cryptographic assumptions). This
in particular precludes improving the run-time of the general mechanism presented
in this paper to be only polynomial in the size of the database. Ullman and Vadhan
[UV11] extend this result to show that releasing synthetic data is hard even for the
simple class of conjunctions of at most 2 variables. This striking result emphasizes
that output representation is extremely important, because it is possible to release the
answers to all of the (at most d2) conjunctions of size 2 privately and efficiently using
output representations other than synthetic data. Kasiviswanathan et al. [KRSU10]
extend the lower bounds [DN03] from arbitrary subset-sum queries to hold also for
an algorithm that only releases conjunctions. Hardt and Talwar showed how to prove
lower bounds for differentially query release using packing arguments, and gave an
optimal lower bound for a certain range of parameters [HT10]. De recently refined this
style of argument and extended it to additional settings [De11]. Gupta et al. [GHRU11]
showed that the class of queries that can be released by mechanisms that access the
database using only statistical queries (which includes almost all mechanisms known
to date, with the exception of the parity learning algorithm of [KLN+08]) is equal to the
class of queries that can be agnostically learned using statistical queries. This rules
out a mechanism even for releasing conjunctions to subconstant error which accesses
the data using only a polynomial number of statistical queries.

1.2. Motivation from Learning Theory
From a machine learning perspective, one of the main reasons one would want to per-
form statistical analysis of a database in the first place is to gain information about the
population from which that database was drawn. In particular, a fundamental result
in learning theory is that if one views a database as a collection of random draws from
some distribution D, and one is interested in a particular class C of boolean predicates
over examples, then a database D of size Õ(VCDIM(C)/α2) is sufficient so that with
high probability, for every query q ∈ C, the proportion of examples in D satisfying q is
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within ±α of the true probability mass under D [AB99; Vap98].1 Our main result can
be viewed as asking how much larger does a database D have to be in order to do this
in a privacy-preserving manner: that is, to allow one to (probabilistically) construct an
output D̂ that accurately approximates D with respect to all queries in C, and yet that
reveals no extra information about database D.2 Note that since the simple Laplace
mechanism can handle arbitrary queries of this form so long as only o(n) are requested,
our objective is interesting only for classes C that contain Ω(n), or even exponentially
in n many queries. We will indeed achieve this (Theorem 3.10), since |C| ≥ 2VCDIM(C).

1.3. Organization
We present essential definitions in Section 2. In Section 3, we show that, ignoring com-
putational constraints, one can release sanitized databases over discretized domains
that are useful for any concept class with polynomial VC-dimension. We then, in Sec-
tion 4, give an efficient algorithm for privately releasing a database useful for the class
of interval queries. We next turn to the study of halfspace queries over Rd and show
in Section 5 that, without relaxing the definition of usefulness, one cannot release a
database that is privacy-preserving and useful for halfspace queries over a continuous
domain. Relaxing our definition of usefulness, in Section 6, we give an algorithm that
in polynomial time, creates a sanitized database that usefully and privately answers
all halfspace queries.

2. DEFINITIONS
We consider databases which are n-tuples from some abstract domain X: i.e. D ∈ Xn.
We will also write n = |D| for the size of the database. For clarity, we think of n as
being publicly known (and, in particular, all databases have the same size n), but as
we will discuss, this assumption can be removed. We think ofX as the set of all possible
data-records. For example, if data elements are represented as bit-strings of length d,
then X = {0, 1}d would be the boolean hypercube in d dimensions. Databases are not
endowed with an ordering: they are simply multi-sets (they can contain multiple copies
of the same element x ∈ X).

A database access mechanism is a randomized mapping A : Xn → R, where R is
some arbitrary range. We say that A outputs synthetic data if its output is itself a
database, and if the intended evaluation of a query on the output is the obvious one:
i.e. if R = X∗, and f is evaluated on A(D) = D′ by computing f(D′).

Our privacy solution concept will be the by now standard notion of differential pri-
vacy. Crucial to this definition will be the notion of neighboring databases. We say that
two databases D,D′ ∈ Xn are neighboring if they differ in only a single data element:
i.e. they are neighbors if their symmetric difference |D∆D′| ≤ 2.

Definition 2.1 (Differential Privacy [DMNS06]). A database access mechanism A :
Xn → R is ε-differentially private if for all neighboring pairs of databases D,D′ ∈ Xn

1Usually, this kind of uniform convergence is stated as empirical error approximating true error. In our
setting, we have no notion of an “intrinsic label” of database elements. Rather, we imagine that different
users may be interested in learning different things. For example, one user might want to learn a rule to
predict feature xd from features x1, . . . , xd−1; another might want to use the first half of the features to
predict a certain boolean function over the second half.
2Formally, we only care about D̂ approximating D with respect to C, and want this to be true no matter how
D was constructed. However, if D was a random sample from a distribution D, then D will approximate D
and therefore D̂ will as well.
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and for all outcome events S ⊆ R, the following holds:

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S]

Remark 2.2. In the differential privacy literature, there are actually two related,
though distinct, notions of differential privacy. In the notion we adopt above, the
database size n is publicly known and two databases are neighboring if one can be
derived from the other by swapping one database element for another. That is, in this
notion, an individual deciding whether to submit either accurate or fake personal in-
formation is assured that an observer would not be able to tell the difference. In the
other notion, n is itself private information, and two databases are neighboring if one
can be derived from the other by adding or removing a single database element. That
is, in the second notion, an individual deciding whether to submit any information at
all is assured that an observer cannot tell the difference. The two notions are very
similar: two databases that are neighboring in the public n regime are at distance at
most 2 in the private n regime. Similarly, using standard techniques, in the private
n regime, n can still be estimated accurately to within an additive factor of O(1/ε),
which almost always allows simulation of the public n regime up to small loss. Here,
we adopt the public n regime because it greatly simplifies our analysis and notation;
nevertheless up to constants, all of our results can be adapted to the private n regime
using standard techniques. We re-prove our main result (our release mechanism for
counting queries) for the private n version of differential privacy in the appendix.

Definition 2.3. The global sensitivity of a query f is its maximum difference when
evaluated on two neighboring databases:

GSnf = max
D,D′∈Xn:|D∆D′|=2

|f(D)− f(D′)|.

In this paper, we consider the private release of information useful for classes of
counting queries.

Definition 2.4. A (normalized) counting query Qϕ, defined in terms of a predicate
ϕ : X → {0, 1} is defined to be

Qϕ(D) =
1

|D|
∑
x∈D

ϕ(x).

It evaluates to the fraction of elements in the database that satisfy the predicate ϕ.

OBSERVATION 2.5. For any predicate ϕ : X → {0, 1}, the corresponding counting
query Qϕ : X∗ → [0, 1] has global sensitivity GSnQϕ ≤ 1/n

Remark 2.6. Note that because we regard n as publicly known, the global sensi-
tivity of a normalized counting query is well defined. We could equally well work with
unnormalized counting queries, which have sensitivity 1 in both the public and private
n regime, but this would result in more cumbersome notation later on.

We remark that everything in this paper easily extends to the case of more gen-
eral linear queries, which can are defined analogously to counting queries, but involve
real valued predicates ϕ : X → [0, 1]. For simplicity we restrict ourselves to counting
queries in this paper, but see [Rot10] for the natural extension to linear queries.

A key measure of complexity that we will use for counting queries is VC-dimension.
VC-dimension is strictly speaking a measure of complexity of classes of predicates, but
we will associate the VC-dimension of classes of predicates with their corresponding
class of counting queries.
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Definition 2.7 (Shattering). A class of predicates P shatters a collection of points
S ⊆ X if for every T ⊆ S, there exists a ϕ ∈ P such that {x ∈ S : ϕ(x) = 1} = T . That
is, P shatters S if for every one of the 2|S| subsets T of S, there is some predicate in P
that labels exactly those elements as positive, and does not label any of the elements
in S \ T as positive.

Definition 2.8 (VC-Dimension). A collection of predicates P has VC-dimension d if
there exists some set S ⊆ X of cardinality |S| = d such that P shatters S, and P does
not shatter any set of cardinality d + 1. We denote this quantity by VC-DIM(P ). We
abuse notation and also write VC-DIM(C) where C is a class of counting queries, to
denote the VC-dimension of the corresponding collection of predicates.

Dwork et al. [DMNS06] give a mechanism which can answer any single low-
sensitivity query while preserving differential privacy:

Definition 2.9 (Laplace mechanism). The Laplace mechanism responds to a query
Q by returning Q(D) +Z where Z is a random variable drawn from the Laplace distri-
bution: Z ∼ Lap(GSnQ/ε).

The Laplace distribution with scale b, which we denote by Lap(b), has probability
density function

f(x|b) =
1

2b
exp

(
−|x|
b

)
THEOREM 2.10 (DWORK ET AL. [DMNS06]). The Laplace mechanism preserves ε-

differential privacy.

This mechanism answers queries interactively, but for a fixed privacy level, its ac-
curacy guarantees degrade linearly in the number of queries that it answers. The
following composition theorem is useful: it tells us that a mechanism which runs k
ε-differentially private subroutines is kε-differentially private.

THEOREM 2.11 (DWORK ET AL. [DKM+06]). If mechanisms M1, . . . ,Mk are each
ε-differentially private, then the mechanism M defined by the (string) composition of
the k mechanisms: M(D) = (M1(D), . . . ,Mk(D)) is kε-differentially private.

We propose to construct database access mechanisms which produce one-shot (non-
interactive) outputs that can be released to the public, and so can necessarily be used to
answer an arbitrarily large number of queries. We seek to do this while simultaneously
preserving privacy. However, as implied by the lower bounds of Dinur and Nissim
[DN03], we cannot hope to be able to usefully answer arbitrary queries. We instead
seek to release synthetic databases which are “useful” (defined below) for restricted
classes of queries C.

Definition 2.12 (Usefulness). A database access mechanism A is (α, δ)-useful with
respect to queries in class C if for every database D ∈ Xn, with probability at least
1− δ, the output of the mechanism D̂ = A(D) satisfies:

max
Q∈C
|Q(D̂)−Q(D)| ≤ α

In this paper, we will derive (α, δ)-useful mechanisms from small α-nets:

Definition 2.13 (α-net). An α-net of databases with respect to a class of queries C
is a set N ⊂ X∗ such that for all D ∈ Xn, there exists an element of the α-net D′ ∈ N
such that:

max
Q∈C
|Q(D)−Q(D′)| ≤ α
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We write Nα(C) to denote an α-net of minimum cardinality among the set of all α-nets
for C.

3. GENERAL RELEASE MECHANISM
In this section we present our general release mechanism. It is an instantiation of the
exponential mechanism of McSherry and Talwar [MT07].

Given some arbitrary range R, the exponential mechanism is defined with respect
to some quality function q : Xn ×R → R, which maps database/output pairs to quality
scores. We should interpret this intuitively as a measure stating that fixing a database
D, the user would prefer the mechanism to output some element of R with as high a
quality score as possible.

Definition 3.1 (The Exponential Mechanism [MT07]). The exponential mechanism
ME(D, q,R, ε) selects and outputs an element r ∈ R with probability proportional to
exp( εq(D,r)2GSnq

).

McSherry and Talwar showed that the exponential mechanism preserves differential
privacy. It is important to note that the exponential mechanism can define a com-
plex distribution over a large arbitrary domain, and so it may not be possible to im-
plement the exponential mechanism efficiently when the range of the mechanism is
super-polynomially large in the natural parameters of the problem. This will be the
case with our instantiation of it.

THEOREM 3.2 ([MT07]). The exponential mechanism preserves ε-differential pri-
vacy.

ALGORITHM 1: NetMechanism(D,C, ε, α)
let R← Nα/2(C).
let q : Xn ×R → R be defined to be:

q(D,D′) = −max
Q∈C

∣∣Q(D)−Q(D′)
∣∣

Sample And Output D′ ∈ R with the exponential mechanism ME(D, q,R, ε)

We first observe that the Algorithm 1, the Net mechanism, preserves ε-differential
privacy.

PROPOSITION 3.3. The Net mechanism is ε-differentially private.

PROOF. The Net mechanism is simply an instantiation of the exponential mecha-
nism. Therefore, privacy follows from Theorem 3.2.

We may now analyze the usefulness of the Net mechanism. A similar analysis of the
exponential mechanism appears in [MT07].

PROPOSITION 3.4. For any class of queries C (not necessarily counting queries) the
Net mechanism is (α, δ)-useful for any α such that:

α ≥ 4∆

ε
log

Nα(C)

δ

where ∆ = maxQ∈C GS
n
Q.
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PROOF. First observe that the sensitivity of the quality scoreGSnq ≤ maxQ∈C GS
n
Q =

∆.
By the definition of an α/2-net, we know that there exists some D∗ ∈ R such that

q(D,D∗) ≥ −α/2. By the definition of the exponential mechanism, this D∗ is output
with probability proportional to at least exp( −εα4GSnq

). Similarly, there are at most |Nα(C)|
databases D′ ∈ R such that q(D,D′) ≤ −α (simply because R = Nα(C)). Hence, by a
union bound, the probability that the exponential mechanism outputs some D′ with
q(D,D′) ≤ −α is proportional to at most |Nα(C)| exp( −εα2GSnq

). Therefore, if we denote
by A the event that the Net mechanism outputs some D∗ with q(D,D∗) ≥ −α/2, and
denote by B the event that the Net mechanism outputs some D′ with q(D,D′) ≤ −α,
we have:

Pr[A]

Pr[B]
≥

exp(−εα4∆ )

|Nα(C)| exp(−εα2∆ )

=
exp( εα4∆ )

|Nα(C)|

Note that if this ratio is at least 1/δ, then we will have proven that the Net mechanism
is (α, δ) useful with respect to C. Solving for α, we find that this is condition is satisfied
so long as

α ≥ 4∆

ε
log

Nα(C)

δ

We have therefore reduced the problem of giving upper bounds on the usefulness of
differentially private database access mechanisms to the problem of upper bounding
the sensitivity of the queries in question, and the size of the smallest α-net for the set
of queries in question. Recall that for counting queries Q on databases of size n, we
always have GSnQ ≤ 1/n. Therefore we have the immediate corollary:

COROLLARY 3.5. For any class of counting queries C the Net mechanism is (α, δ)-
useful for any α such that:

α ≥ 4

εn
log

Nα(C)

δ

To complete the proof of utility for the Net mechanism for counting queries, it re-
mains to prove upper bounds on the size of minimal α-nets for counting queries. We
begin with a bound for finite classes of queries.

THEOREM 3.6. For any finite class of counting queries C:

|Nα(C)| ≤ |X|
log |C|
α2

In order to prove this theorem, we will show that for any collection of counting queries
C and for any database D, there is a “small” database D′ of size |D′| = log |C|

α2 that
approximately encodes the answers to every query in C, up to error α. Crucially, this
bound will be independent of |D|.

LEMMA 3.7. For any D ∈ Xn and for any finite collection of counting queries C,
there exists a database D′ of size

|D′| = log |C|
α2
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such that:

max
Q∈C
|Q(D)−Q(D′)| ≤ α

PROOF. Let m = log |C|
α2 We will construct a database D′ by taking m uniformly

random samples from the elements of D. Specifically, for i ∈ {1, . . . ,m} let Xi be a
random variable taking value xj with probability |{x ∈ D : x = xj}|/|D|, and let D′
be the database containing elements X1, . . . , Xm. Now fix any Qϕ ∈ C and consider
the quantity Qϕ(D′). We have: Qϕ(D′) = 1

m

∑m
i=1 ϕ(Xi). We note that each term of the

sum ϕ(Xi) is a bounded random variable taking values 0 ≤ ϕ(Xi) ≤ 1, and that the
expectation of Qϕ(D′) is:

E[Q(D′)] =
1

m

m∑
i=1

E[ϕ(Xi)] = Qϕ(D)

Therefore, we can apply a standard Chernoff bound which gives:

Pr [|Qϕ(D′)−Qϕ(D)| > α] ≤ 2e−2mα2

Taking a union bound over all of the counting queries Qϕ ∈ C, we get:

Pr

[
max
Qϕ∈C

|Qϕ(D′)−Qϕ(D)| > α

]
≤ 2|C|e−2mα2

Plugging in the chosen number of samples m makes the right hand side smaller than 1
(so long as |C| > 2), proving that there exists a database of size m satisfying the stated
bound, which completes the proof of the lemma.

Now we can complete the proof of Theorem 3.6.

PROOF OF THEOREM 3.6. By Lemma 3.7, we have that for any D ∈ X∗ there ex-
ists a database D′ ∈ X∗ with |D′| = log |C|

α2 such that maxQϕ∈C |Qϕ(D)−Qϕ(D′)| ≤ α.
Therefore, if we take N = {D′ ∈ X∗ : |D′| = log |C|

α2 } to be the set of every database of
size log |C|

α2 , we have an α-net for C. Since

|N | = |X|
log |C|
α2

and by definition |Nα(C)| ≤ |N |, we have proven the theorem.

When the cardinality of the concept class is untenably large, we can replace lemma
3.7 with the following lemma:

LEMMA 3.8 ([AB99; VAP98]). For any D ∈ X∗ and for any collection of counting
queries C, there exists a database D′ of size

|D′| = O(VCDIM(C)log(1/α)/α2)

such that:

max
Q∈C
|Q(D)−Q(D′)| ≤ α

This lemma straightforwardly gives an analogue of Theorem 3.6:

THEOREM 3.9. For any class of counting queries C:

|Nα(C)| ≤ |X|O(VCDIM(C)log(1/α)/α2)
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Note that we always have VCDIM(C) ≤ log |C| for finite classes of counting queries,
and so (modulo constants and the log(1/α) term) Theorem 3.9 is strictly stronger than
Theorem 3.6.

Finally, we can instantiate Corollary 3.5 to give our main utility theorem for the Net
mechanism.

THEOREM 3.10. For any class of counting queries C, there exists constant c such
that the Net mechanism is (α, δ)-useful for:

α ≥ c ·
(

VCDIM(C) log |X|+ log 1/δ

εn

)1/3

.

PROOF. The instantiation guarantees the existence of constants c1 and c2 such that
the Net mechanism gives (α, δ)-usefulness for an α such that:

α ≥ 4

εn

(
c1VCDIM(C) log(1/α) log |X|

α2
+ c2 log |X|+ log 1/δ

)
We assume that α ≤ 1/2 (i.e. that the error guaranteed by the theorem is nontrivial).

In this case, we have α2/ log(1/α) < 1 and so it is only pessimistic to take:

α3

log(1/α)
≥ 4

εn
(c1VCDIM(C) log |X|+ c2 log |X|+ log 1/δ) .

Moreover, we have α3 ≤ α3/ log(1/α), and so it is only further pessimistic to consider

α3 ≥ 4

εn
(c1VCDIM(C) log |X|+ c2 log |X|+ log 1/δ) .

Solving for α yields(
4(c1VCDIM(C) log |X|+ c2 log |X|+ log 1/δ)

3εn

)1/3

,

which yields the theorem.

Theorem 3.10 shows that a database of size Õ( log |X|VCDIM(C)
α3ε ) is sufficient in order to

output a set of points that is α-useful for a concept class C, while simultaneously pre-
serving ε-differential privacy. If we were to view our database as having been drawn
from some distribution D, this is only an extra Õ( log |X|

αε ) factor larger than what would
be required to achieve α-usefulness with respect to D, even without any privacy guar-
antee.

The results in this section only apply for discretized database domains, and may
not be computationally efficient. We explore these two issues further in the remaining
sections of the paper.

3.1. The Necessity of a Dependence on VC-Dimension
We just gave an ε-differentially private mechanism that is (α, δ)-useful with respect to
any set of counting queries C, when given a database of size n ≥ Õ( log |X|VCDIM(C)

α3ε ). In
this section, we show that the dependence on the VC-dimension of the class C is tight.

The proof follows an argument similar to one used by Dinur and Nissim to show
that no private mechanism can answer all counting queries to nontrivial accuracy
[DN03]. Fix a class of counting queries C corresponding to a class of predicates P of
VC-dimension d. Let S ⊂ X denote a set of universe elements of size |S| = d that are
shattered by P , as guaranteed by the definition of VC-dimension. We will consider all
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subsets T ⊂ S of size |T | = d/2. Denote this set by DS = {T ⊂ S : |T | = d/2} For each
such T ∈ DS , let ϕT be the predicate such that:

ϕT (x) =

{
1, x ∈ T ;
0, x 6∈ T .

as guaranteed by the definition of shattering, and let QT = QϕT be the corresponding
counting query. Note that for T ∈ DS , we can treat QT as an element of C for the
purpose of evaluation against databases ⊂ S, because there must exist some element
of C that induces the same partition of S as QT does. In what follows, we restrict
ourselves to databases consisting of elements of S, and so we adopt this convention.

We begin with a proof of “blatant non-privacy”, like that shown by Dinur and Nis-
sim [DN03].

LEMMA 3.11. For any 0 < δ < 1, let M be an (α, δ)-useful mechanism for C. Given
as input M(T ) where T is any database T ∈ DS , there is a procedure which with prob-
ability 1 − δ reconstructs a database T ′ with |T ′∆T | ≤ dα. M(T ) is not required to be
synthetic data.

PROOF. Write D′ = M(T ). With probability at least 1− δ, we have maxQ∈C |Q(T )−
Q(D′)| ≤ α. Then with probability 1− δ, the following reconstruction succeeds: return
T ′ = argmaxT ′∈DS QT ′(D′). (That is, T ′ is the database in DS that best matches M(T ).)

Note that the fraction of T reconstructed by T ′ is exactly QT ′(T ) = QT (T ′). Thus,

QT (T ′) = QT ′(T )

≥ QT ′(D′)− α by (α, δ)-usefulness of D′

≥ QT (D′)− α by choice of T ′ as best match for D′

≥ QT (T )− 2α by (α, δ)-usefulness of D′

= 1− 2α,

which completes the proof, since |T | = |T ′| = d/2.

We now explore the consequences this blatant non-privacy has for ε-differential pri-
vacy.

THEOREM 3.12. For any class of counting queries C, for any 0 < δ < 1, if M is
an ε-differentially private mechanism that is (α, δ) useful for C given databases of size
n ≤ VCDIM(C)

2 , then α ≥ 1
2(exp(ε)+1) .

PROOF. Let T ∈ DS be a set selected uniformly at random, D′ = M(T ), and let T ′
be the set reconstructed from D′ = M(T ) as in Lemma 3.11.

Select x ∈ T uniformly at random, and y ∈ S \ T uniformly at random. Let T̂ =
(T \ {x}) ∪ {y} be the set obtained by swapping element x out and replacing it with y.
Note that (x, y) are uniformly random over pairs of elements in S such that the first
is in T and the second is not in T ; similarly, (x, y) are uniformly random over pairs of
elements in S such that the first is not in T̂ and the second is in T̂ . Let T̂ ′ be the set
reconstructed from D′ = M(T̂ ).
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Except with probability at most 2δ, we have the following properties of the recon-
structions:

Pr[x ∈ T ′ given input T ] =
|T | − (1/2)|T∆T ′|

|T |

≥
d
2 − dα

d
2

= 1− 2α

and

Pr[x ∈ T̂ ′ given input T̂ ] =
(1/2)|T̂∆T̂ ′|

|T̂ |

≤ dα
d
2

= 2α

Now recall that T and T̂ are neighboring databases, with |T∆T̂ | ≤ 2, and so by the fact
that M is ε-differentially private, we also know:

exp(ε) ≥ Pr[x ∈ T ′ given input T ]

Pr[x ∈ T̂ ′ given input T̂ ]
≥ 1− 2α

2α
=

1

2α
− 1,

and so

α ≥ 1

2(exp(ε) + 1)
,

as desired.

4. INTERVAL QUERIES
In this section we give an efficient algorithm for privately releasing a database useful
for the class of interval queries over a discretized domain, given a database of size only
polynomial in our privacy and usefulness parameters. We note that our algorithm is
easily extended to the class of axis-aligned rectangles in d dimensional space for d a
constant; we present the case of d = 1 for databases that consist of distinct points, for
clarity.

Consider a database D of n points in {1, . . . , 2d} (in Corollary 5.2 we show some dis-
cretization is necessary). Given a1 ≤ a2, both in {1, 2, . . . , 2d}, let Ia1,a2 be the indicator
function corresponding to the interval [a1, a2]. That is:

Ia1,a2(x) =

{
1, a1 ≤ x ≤ a2;
0, otherwise.

Definition 4.1. An interval query Q[a1,a2] is defined to be

Q[a1,a2](D) =
∑
x∈D

Ia1,a2(x)

|D|
.

Note that GSnQ[a1,a2]
= 1/n, and we may answer interval queries while preserving

ε-differential privacy by adding noise proportional to Lap(1/(εn)).
We now give the algorithm. Algorithm 2 repeatedly performs a binary search to

partition the unit interval into regions that have approximately an α′ fraction of the
point mass in them. It then releases a database that has exactly an α′-fraction of the
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ALGORITHM 2: ReleaseIntervals(D,α, ε)
let α′ ← α/6, MaxIntervals← d4/3α′e, ε′ ← ε/(d ·MaxIntervals).
let Bounds be an array of length MaxIntervals
let i← 1, Bounds[0]← 1
while Bounds[i− 1] < 2d do

a← Bounds[i− 1], b← (2d − a+ 1)/2, increment← (2d − a+ 1)/4
while increment ≥ 1 do

let v̂ ← Q[a,b](D) + Lap(1/(ε′n))
if v̂ > α′ then let b← b− increment
else let b← b+ increment
let increment← increment/2

let Bounds[i]← b, i← i+ 1
Output D′, a database that has α′m points in each interval [Bounds[j − 1], Bounds[j]] for each
j ∈ [i], for any m > 1

α′ .

point mass in each of the intervals that it has discovered. There are at most ≈ 1/α′

such intervals, and each binary search terminates after at most d rounds (because the
interval consists of at most 2d points). Therefore, the algorithm requires only ≈ d/α′

accesses to the database, and each one is performed in a privacy preserving manner
using noise from the Laplace mechanism. The privacy of the mechanism then follows
immediately:

THEOREM 4.2. ReleaseIntervals is ε-differentially private.

PROOF. The algorithm runs a binary search at most d4/3α′e times. Each time, the
search halts after d queries to the database using the Laplace mechanism. Each query
is ε′-differentially private (the sensitivity of an interval query is 1/n since it is a count-
ing query). Privacy then follows from the definition of ε′ and the fact that the composi-
tion of k differentially private mechanisms is kε differentially private.

THEOREM 4.3. ReleaseIntervals is (α, δ)-useful for databases of size:

n ≥ 288d

εα3
· log

(
8d

δα

)
PROOF. By a union bound and the definition of the Laplace distribution, if the

database size n satisfies the hypothesis of the theorem, then except with probability
at most δ, none of the (4/3)d/α′ draws from the Laplace distribution have magnitude
greater than α′2. That is, we have

max |v̂ −Q[a,b](D)| ≤
log( 8d

αδ )

ε′n

≤
8d log( 8d

αδ )

εαn

≤ α′2

except with probability δ. Conditioned on this event occurring, for each interval
[Bounds[j − 1],Bounds[j]] for j ∈ [i], fBounds[j−1],Bounds[j](D) ∈ [α′ − α′2, α′ + α′2]. In
the synthetic database D′ released, each such interval contains exactly an α′ frac-
tion of the database elements. We can now analyze the error incurred on any query
when evaluated on the synthetic database instead of on the real database. Any inter-
val [Bounds[j − 1],Bounds[j]] ⊂ [a, b] will contribute error at most α′ to the total, and
any interval [Bounds[j−1],Bounds[j]] 6⊂ [a, b] that also intersects with [a, b] contributes
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error at most (α′ + α′2) to the total. Note that there are at most 2 intervals of this
second type. Therefore, on any query Q[a,b] we have:

|Q[a,b](D
′)−Q[a,b](D)| ≤

∑
j:[Bounds[j−1],Bounds[j]]∩[a,b] 6=∅

|Q[Bounds[j−1],Bounds[j]](D)−Q[Bounds[j−1],Bounds[j]](D
′)|

≤ 4

3α′
α′2 + 2(α′ + α′2)

≤ 6α′

= α

We note that although the class of intervals is simple, we are able to answer 22d

queries over a universe of size 2d, while needing a database of size only poly(d) and
needing running time only poly(d).

5. LOWER BOUNDS
Could we possibly modify the results of Sections 4 and 3 to hold for non-discretized
databases? Suppose we could usefully answer an arbitrary number of queries in some
simple concept class C representing interval queries on the real line (for example,
“How many points are contained within the following interval?”) while still preserving
privacy. Then, for any database containing single-dimensional real valued points, we
would be able to answer median queries with values that fall between the 50− δ, 50 + δ
percentile of database points by performing a binary search on D using A (where
δ = δ(α) is some small constant depending on the usefulness parameter α). However,
answering such queries is impossible while guaranteeing differential privacy. Unfortu-
nately, this would seem to rule out usefully answering queries in simple concept classes
such as halfspaces and axis-aligned rectangles, that are generalizations of intervals.

We say that a mechanism answers a median query M usefully if it outputs a real
value r such that r falls between the 50− δ and 50 + δ percentiles of points in database
D for some δ < 50.

THEOREM 5.1. No mechanism A can answer median queries M with outputs that
fall between the 50 − δ, 50 + δ percentile with positive probability on any real valued
database D, while still preserving ε-differential privacy, for δ < 50 and any ε.

PROOF. Consider real valued databases containing elements in the interval [0, 1].
Let D0 = (0, . . . , 0) be the database containing n points with value 0. Suppose A can
answer median queries usefully. Then we must have Pr[A(D0,M) = 0] > 0 since ev-
ery point in D0 is 0. Since [0, 1] is a continuous interval, there must be some value
v ∈ [0, 1] such that Pr[A(D0,M) = v] = 0. Let Dn = (v, . . . , v) be the database con-
taining n points with value v. We must have Pr[A(Dn,M) = v] > 0. For 1 < i < n,
let Di = (0, . . . , 0︸ ︷︷ ︸

n−i

, v, . . . , v︸ ︷︷ ︸
i

). Then we must have for some i, Pr[A(Di,M) = v] = 0 but

Pr[A(Di+1,M) = v] > 0. But since Di and Di+1 differ only in a single element, this
violates differential privacy.

COROLLARY 5.2. No mechanism operating on continuous valued datasets can be
(α, δ)-useful for the class of interval queries, nor for any class C that generalizes inter-
val queries to higher dimensions (for example, halfspaces, axis-aligned rectangles, or
spheres), while preserving ε-differential privacy, for any α, δ < 1/2 and any ε ≥ 0.

PROOF. Consider any real valued database containing elements in the interval
[0, 1]. If A is (α, δ)-useful for interval queries and preserves differential privacy, then
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we can construct a mechanism A′ that can answer median queries usefully while pre-
serving differential privacy. By Theorem 5.1, this is impossible. A′ simply computes
D̂ = A(D), and performs binary search over queries on D̂ to find some interval [0, a]
that contains n/2 ± αn points. Privacy is preserved since we only access D through
A, which by assumption preserves ε-differential privacy. With positive probability, all
interval queries on D̂ are correct to within ±α, and so the binary search can proceed.
Since α < 1/2, the result follows.

Remark 5.3. We note that we could have replaced a “continuous” universe in our
argument with a finely discretized universe. In this case, we would get a lower bound
in which the accuracy would depend on the discretization parameter.

We may get around the impossibility result of Corollary 5.2 by relaxing our defini-
tions. One approach is to discretize the database domain, as we do in Sections 3 and 4.
Another approach, which we take in Section 6, is to relax our definition of usefulness.

6. ANSWERING HALFSPACE QUERIES
In this section, we give a non-interactive mechanism for releasing the answers to
“large-margin halfspace” queries, defined over databases consisting of n unit vectors in
Rd. The mechanism we give here will be different from the other mechanisms we have
given in two respects. First, although it is a non-interactive mechanism, it will not out-
put synthetic data, but instead another data structure representing the answers to its
queries. Second, it will not offer a utility guarantee for all halfspace queries, but only
those that have “large margin” with respect to the private database. Large margin,
which we define below, is a property that a halfspace has with respect to a particular
database. Note that by our impossibility result in the previous section, we know that
without a relaxation of our utility goal, no private useful mechanism is possible.

Definition 6.1 (Halfspace Queries). For a unit vector y ∈ Rd, the halfspace query
fy : Rd → {0, 1} is defined to be:

fy(x) =

{
1, If 〈x, y〉 > 0;
0, Otherwise.

With respect to a database, a halfspace can have a certain margin γ:

Definition 6.2 (Margin). A halfspace query fy has margin γ with respect to a
database D ∈ (Rd)n if for all x ∈ D: |〈x, y〉| ≥ γ.

Before we present the algorithm, we will introduce a useful fact about random pro-
jections, called the Johnson-Lindenstrauss lemma. It states, roughly, that the norm of
a vector is accurately preserved with high probability when the vector is projected into
a lower dimensional space with a random linear projection.

THEOREM 6.3 (THE JOHNSON-LINDENSTRAUSS LEMMA [DG99; ACH03; BBV06]).
For d > 0 an integer and any 0 < ς, τ < 1/2, let A be a T × d random matrix with
±1/
√
T random entries, for T ≥ 20ς−2 log(1/τ). Then for any x ∈ Rd:

Pr
A

[|||Ax||22 − ||x||22| ≥ ς||x||22] ≤ τ

For our purposes, the relevant fact will be that norm preserving projections also pre-
serve pairwise inner products with high probability. The following corollary is well
known.

COROLLARY 6.4 (THE JOHNSON-LINDENSTRAUSS LEMMA FOR INNER PRODUCTS).
For d > 0 an integer and any 0 < ς, τ < 1/2, let A be a T × d random matrix with
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±1/
√
T random entries, for T ≥ 20ς−2 log(1/τ). Then for any x ∈ Rd:

Pr
A

[|〈(Ax), (Ay)〉 − 〈x, y〉| ≥ ς

2
(||x||22 + ||y||22)] ≤ 2τ

PROOF. Consider the two vectors u = x+y and v = x−y. We apply Theorem 6.3 to u
and v. By a union bound, except with probability 2τ we have: |||A(x+y)||22−||x+y||22| ≤
ς||x+ y||22 and |||A(x− y)||22 − ||x− y||22| ≤ ς||x− y||22. Therefore:

〈(Ax), (Ay)〉 =
1

4
(〈A(x+ y), A(x+ y)〉 − 〈A(x− y), A(x− y)〉)

=
1

4

(
||A(x+ y)||22 − ||A(x− y)||22

)
≤ 1

4

(
(1 + ς)||x+ y||22 − (1− ς)||x− y||22

)
= 〈x, y〉+

ς

2

(
||x||22 + ||y||22

)
An identical calculation shows that 〈(Ax), (Ay)〉 ≥ 〈x, y〉 − ς

2

(
||x||22 + ||y||22

)
, which com-

pletes the proof.

Instead of outputting synthetic data, our algorithm outputs a data structure based
on a collection of random projections. The ReleaseHalfspaces algorithm selects m pro-
jection matrices A1 . . . Am to project the original database into a low dimensional space
RT , as well as a collection of ‘canonical’ halfspaces UT in T dimensions. ReleaseHalfs-
paces then computes these canonical halfspace queries on each projection of the origi-
nal data, and releases noisy versions of the answers, along with {Ai} and UT .

More formally, the output of ReleaseHalfspaces is a Projected Halfspace Data Struc-
ture:

Definition 6.5 (Projected Halfspace Data Structure). A T dimensional projected
halfspace data structure of size m, DH = {{Ai}, U, {vi,j}} consists of three parts:

(1) m matrices A1, . . . , Am ∈ RT×d mapping vectors from Rd to vectors in RT .
(2) A collection of T -dimensional unit vectors UT ⊂ RT .
(3) For each i ∈ [m] and j ∈ U , a real number vi,j ∈ R.

A projected halfspace data structure DH can be used to evaluate a halfspace query
fy as follows. To denote the evaluation of a halfspace query on a projected halfspace
data structure, we write Eval(fy, DH). When the meaning is clear from context, we
abuse notation and simply write fy(DH) to denote this evaluation:
Eval(fy, DH):

(1) Compute y′ by rounding the components of y to the nearest multiple of γ/(8
√
d)

and projecting the resulting vector onto the nearest point on the d-dimensional
unit ball.

(2) For i ∈ [m], compute the projection ŷ′i ∈ RT as: ŷ′i = Ai · y′.
(3) For each i ∈ [m] compute uj(i) = argminuj∈UT ||ŷ′i − uj ||2
(4) Output 1

m

∑m
i=1 vi,j(i)

Definition 6.6. A γ-net for unit vectors in Rd is a set of points Ud ⊂ Rd such that for
all x ∈ Rd with ||x||2 = 1:

min
y′∈Ud

||x− y′||2 ≤ γ
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The collection UT of canonical halfspaces is selected to form a γ/4-net such that for
every y ∈ RT with ||y||2 = 1, there is some u ∈ UT such that ||y − u||2 ≤ γ/4. The
size of UT will be exponential in T , but we choose T to be only a constant (in n and
d—unfortunately not in γ and α), so that maintaining such a set is feasible. Each vi,j
will represent the approximate answer to the query fuj on a projection of the pri-
vate database by Ai. The Johnson-Lindenstrauss lemma will guarantee that not many
points with large margin are shifted across the target halfspace by any particular pro-
jection, and the average of the approximate answers across all m projections will with
high probability be accurate for every halfspace.

First we bound the size of the needed net UT for halfspaces.

CLAIM 6.7. There is a γ-net UT for unit vectors in RT of size |UT | ≤
(

2
√
T
γ

)T
, such

that all elements of the γ-net are unit vectors.

PROOF. First, construct U ′ by taking the space of all T -dimensional unit vectors
and discretizing each coordinate to the nearest multiple of γ/(2

√
T ) (the coordinates

will remain between 0 and 1), and then transform it into U by projecting each point in

U ′ to its nearest point on the unit ball. There are
(

2
√
T
γ

)T
such vectors.

For any unit x ∈ RT , let y = argminy∈U ||x − y||2, w = argminw∈U ′ ||x − w||2, and
z = argminz∈U ||w − z||2. Note that z is simply the projection of w onto the unit ball,

and ||w− z||2 ≤
√∑T

i=1(γ/2
√
T )2 = γ/2. Similarly, ||w− x||2 ≤

√∑T
i=1(γ/2

√
T )2 = γ/2.

Then by the triangle inequality, we have:

||x− y||2 ≤ ||x− z||2
≤ ||x− w||2 + ||w − z||2
≤ γ.

We can now present our algorithm.

ALGORITHM 3: ReleaseHalfspaces(D, d, γ, α, ε)
let:

ς ← γ

4
τ ← α

8
T ← d20ς−2 log(1/τ)e m← 2

α2

(
d log(8

√
d/γ) + log(6/β)

)
let UT be a γ/4-net for unit vectors in RT .
for i = 1 to m do

let Ai ∈ {−1/
√
T , 1/

√
T}T×d be a uniformly random matrix for each i ∈ [m].

let D̂i ⊂ RT be D̂i = {Aix : x ∈ D}, followed by normalization to unit length of each point.
for each xj ∈ U do let pi,j ← Lap

(
m|U|
εn

)
, vi,j ← fxj (D̂i) + pi,j

Release DH = ({Ai}, U, U ′, {vi,j}).

THEOREM 6.8. ReleaseHalfspaces preserves ε-differential privacy.

PROOF. Privacy follows from the fact that the composition of k ε-differentially pri-
vate mechanisms is kε-differentially private. The algorithm makes m|UT | calls to the
Laplace mechanism, and each call preserves ε/(m|UT |)-differential privacy (since each
query has sensitivity 1/n).
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THEOREM 6.9. Consider a database D of unit vectors in Rd with:

n ≥ m(8
√
T/γ)T

ε
log

(
2m(8

√
T/γ)T

β

)

for m = 2
α2

(
d log(8

√
d/γ) + log(6/β)

)
. Then except with probability at most β, DH =

ReleaseHalfSpaces(D, d, γ, α, ε) is such that for each unit vector y ∈ Rd with margin γ
with respect to D: |fy(D) − fy(DH)| ≤ α. The running time of the algorithm and the
bound on the size of D are both polynomial for γ, α ∈ Ω(1).

PROOF. The high-level idea of the proof is to argue that the algorithm consists of a
sequence of weakenings or approximations of the true halfspace queries, and that with
high probability all of these approximations are good.

The initial rounding step in the evaluation of a halfspace query against a projected
halfspace data structure serves to discretize the set of halfspaces, to allow us to apply
a union bound later in the proof. Essentially, we implicitly introduce a γ/4-net Ud on
Rd. Consider any y ∈ Rd such that fy has margin γ with respect to D, and let y′ =
argminy′∈Ud ||y − y

′||2. Note that fy′ has margin at least 3
4γ with respect to D and thus

fy(D) = fy′(D). Thus, in the remainder of the proof, we will consider halfspace queries
corresponding to the elements of Ud. If our algorithm can maintain accuracy for these
halfspaces, it will also maintain accuracy for all large margin halfspaces.

We first argue that with high probability, the value of a halfspace query y′ ∈ Ud on a
point x ∈ D is not changed substantially by projecting both x and y′ into T -dimensional
space before evaluating it. By Corollary 6.4, for each i ∈ [m] and each x ∈ D, given the
values of ς, τ, and T used in Algorithm 3,

Pr
Ai

[
|〈(Aix), (Aiy

′)〉 − 〈x, y′〉| ≥ ς

2
(||x||22 + ||y′||22)

]
=

Pr
Ai

[
|〈(Aix), (Aiy

′)〉 − 〈x, y′〉| ≥ γ

8
(1 + 1)

]
=

Pr
Ai

[
|〈(Aix), (Aiy

′)〉 − 〈x, y′〉| ≥ γ

4

]
≤ α/4

By linearity of expectation, the expected number of points in D moved by more than
γ/4 with respect to some y′ in a given projection Ai is at most αn/4. Recall that each y′
has margin at least 3

4 with respect toD, and so the expected number of points inD such
that the projected halfspace and the original halfspace y′ agree and the evaluation of
the query in the projected space still has substantial margin (γ/2) is

E

[∣∣∣∣{x ∈ D : (fy(x) = fAiy(Aix)) ∧
(
|〈Aix,Aiy〉| ≥

1

2
γ

)}∣∣∣∣] ≥ n(1− α

4

)
.

Next, we see that a projected halfspace query is always well approximated by the
resulting closest net point in UT , with respect to its answer on any unit vector x̂ ∈ RT .
Recall UT is a γ/4-net for unit vectors in RT . Consider the net point closest to the
projection of y′ under Ai, ui,y′ = argminu∈U ||u − Aiy

′||2. By the property of the net,
||ui,y′ −Aiy′||2 ≤ γ/4, so

|〈Aiy′, x̂〉| = |〈ui,y′ , x̂〉+ 〈Aiy′ − ui,y′ , x̂〉|
≤ |〈ui,y′ , x̂〉|+ ||Aiy′ − ui,y′ ||2||x||2
≤ 〈ui,y′ , x̂〉+ γ/4.

We can combine these facts to see that the number of points on which the evaluation
of the nearest canonical vector in the low-dimensional space agrees with the original
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vector y′ is:

E

[∣∣∣∣{x ∈ D :
(
fy′(x) = fui,y′ (Aix)

)
∧
(
|〈Aix, ui,y′〉| ≥

1

4
γ

)}∣∣∣∣] ≥ n(1− α

4

)
.

In other words, fy′(D)− α/4 ≤ E[fui,y′ (D̂i)] ≤ fy′(D) + α/4.

There are three possible reasons the projected halfspace data structure might not
provide accurate answers for all large-margin halfspaces, and we bound the probability
of each failure mode by β/3:

(1) There is a halfspace query y′ such that the average value (over the m projections) of
its canonical halfspace query on the projections of the database is far from the true
value of query y′ on the true database D.
Note that for each i, fui,y′ (D̂i) is an independent random variable taking values in
the bounded range [0, 1], and so we are able to apply a Chernoff bound. For each y′:

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

fui,y′ (D̂i)− E[fuy′ (D̂)]

∣∣∣∣∣ ≥ α

2

]
≤ 2 exp

(
−mα

2

2

)
Taking a union bound over all (8

√
d/γ)d vectors y′ ∈ Ud in the implicit high-

dimensional net, plugging in our chosen value for the number of samples m, and
recalling our bound on E[fuy′ (D̂)] we find that:

Pr

[
max
y′∈Ud

∣∣∣∣∣ 1

m

m∑
i=1

fui,y′ (D̂i)− fy′(D)

∣∣∣∣∣ ≥ 3α

4

]
≤ β

3

(2) Any one of the |pi,j | is very large.
The algorithm makes m|UT | draws from the distribution Lap

(
m|UT |
εn

)
during its

run, assigning these draws to values pi,j . Except with probability at most β/3, we
have for all i, j:

|pi,j | ≤
m|UT |
εn

log

(
2m|UT |

β

)
≤ 1,

plugging in the value of n from the theorem statement.
(3) Even though all of the |pi,j | are less than 1, there exists a sequence j(1), . . . , j(m)

that could be summed as a result of computing fy(DH) = 1
m

∑m
i=1 vi,j(i), such that

the average contribution of the noise is very large.
Conditioning on |pi,j | ≤ 1 for all i, j and applying another Chernoff bound, we find
that for any sequence of indices j(i):

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

pi,j(i)

∣∣∣∣∣ ≥ α/4
]
≤ 2 exp

(
−mα

2

8

)
Again taking a union bound over y′ ∈ Ud and plugging in our value of the number
of samples m, we find that:

Pr

[
max

j(1),...,j(m)

∣∣∣∣∣ 1

m

m∑
i=1

pi,j(i)

∣∣∣∣∣ ≥ α/4
]
≤ β

3

Assuming we are in the 1 − β probability situation when none of the three failure
modes occur, we have for any y with margin γ with respect to D, for the corresponding
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y′:

fy′(DH) =
1

m

m∑
i=1

vi,j(i)

=
1

m

(
m∑
i=1

fui,y′ (D̂i) +

m∑
i=1

pi,j(i)

)

≤ 1

m

(
m∑
i=1

fui,y′ (D̂i)

)
+ α/4

≤ fy′(D) + α

= fy(D) + α,

which completes the proof.

7. CONCLUSIONS AND OPEN PROBLEMS
In this paper we have shown a very general information theoretic result: that small
nets are sufficient to certify the existence of accurate, differentially private mecha-
nisms for a class of queries. For counting queries, this allows algorithms which can
accurately answer queries from a class C given a database that is only logarithmic in
the size of C, or linear its VC-dimension. We then also gave an efficient algorithm for
releasing the class of interval queries on a discrete interval, and for releasing large-
margin halfspace queries in the unit sphere.

The main question left open by our work is the design of algorithms which achieve
utility guarantees comparable to our Net mechanism, but have running time only poly-
nomial in n, the size of the input database. This question is extremely interesting even
for very specific classes of queries. Is there such a mechanism for the class of conjunc-
tions? For the class of parity queries?
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A. RELEASING COUNTING QUERIES WHILE KEEPING n PRIVATE
In this section, we briefly sketch the adaptation of our mechanism for releasing data
useful for counting queries to the private-n version of differential privacy. The tech-
nique for converting between private n and public n versions of differential privacy is
standard.

For the private n version of differential privacy, we think of datasets D ∈ X∗, which
can be multisets of any cardinality. Two datasets D,D′ ∈ X∗ are now said to be neigh-
boring if one can be obtained from the other by adding or removing a single element:
i.e. D and D′ are neighbors if |D4D′| ≤ 1. Private n differential privacy is identical
to public n differential privacy, except that it uses this slightly modified definition of
neighbors.

Definition A.1 (Differential Privacy (private n version)). A database access mecha-
nism A : X∗ → R is ε-differentially private if for all neighboring pairs of databases
D,D′ ∈ X∗ and for all outcome events S ⊆ R, the following holds:

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S]

When the size of the database n is private, it is more natural to discuss unnormalized
counting queries.

Definition A.2. An unnormalized counting query Qϕ, defined in terms of a predicate
ϕ : X → {0, 1} is defined to be

Qϕ(D) =
∑
x∈D

ϕ(x).

It evaluates to the number of elements in the database that satisfy the predicate ϕ.

Note that the global sensitivity of an unnormalized counting query is 1, independent
of the size of the database n. This allows us to apply techniques such as the Laplace
mechanism and the Exponential mechanism without knowledge of n. Recall that in-
stantiated for counting queries, the Net mechanism outputs a database of smaller car-
dinality than the private database D. When we were working with normalized queries,
this did not matter: queries were evaluated at the same scale on all databases. When
we are working with un-normalized queries, we must rescale the answers computed
on a small database if we wish to interpret them as approximating their value on a
larger database. Towards this end, suppose D′ ∈ X∗ is a database of size |D′| = m. For
fixed n′, we write: D′m,n′ to denote that answers computed on database D′ should be
rescaled to the range [0, n′]. That is, given a counting query Qϕ, define:

Qϕ(D′m,n′) =
n′

m

∑
x∈D′

ϕ(x)

Note that because n = |D| must remain private, we will use a private estimate n′ of n,
rather than n itself when defining the rescaling factor for our output.

We can now give the private n version of the Net mechanism, adapted to counting
queries.

THEOREM A.3. PrivateNRelease preserves ε-differential privacy in the private-n
model.
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ALGORITHM 4: PrivateNRelease(D,C, ε, α)
let n̂ = |D|+ Lap(2/ε).
let m← log |C|/α2

let R← {D′ ∈ X∗ : |D′| = m}
let q : Xn ×R → R be defined to be:

q(D,D′) = −max
Q∈C

∣∣Q(D)−Q(D′m,n̂)
∣∣

Sample D′ ∈ R with the exponential mechanism ME(D, q,R, ε/2)
Output D′m,n̂.

PROOF. We access the database only twice: once using the Laplace mechanism of
[DMNS06], which is ε/2-differentially private, and once using the exponential mecha-
nism of [MT07], which is ε/2-differentially private. Therefore, the mechanism in total
is ε-differentially private by the privacy composition theorem of [DKM+06].

THEOREM A.4. With probability 1 − δ, the private n release mechanism outputs a
database D′m,n̂ such that for all Q ∈ C: |Q(D′m,n̂)−Q(D)| ≤ αn whenever:

α ≥
(

8 log |C| log |X|
εn

+
4

ε
ln

(
2

δ

))1/3

where a and b are absolute constants.

PROOF. The proof is largely the same as for the public n version of the Net mech-
anism. Let n = |D|. First, by the properties of the Laplace distribution, we have that
with probability 1−δ/2, |n̂−n| ≤ 2 ln(2/δ)

ε . For the rest of the argument, we condition on
this event occurring. We also have by Lemma 3.7 that for all D, there exists a database
D′ ∈ R such that | f(D′)

m − f(D)
n | ≤ α (recall that our queries are now unnormalized). In

other words: ∣∣∣ n
m
f(D′)− f(D)

∣∣∣ ≤ αn
Combining these two facts, we have:∣∣∣∣ n̂mf(D′)− f(D)

∣∣∣∣ ≤ αn+
4 ln 2/δ

ε

In other words, we have that R is an α′/2 ≡
(
αn+ 4 ln 2/δ

ε

)
/2-net for C. We may there-

fore reason analogously to Proposition 3.4.
By the definition of an α′/2-net, we know that there exists some D∗ ∈ R such that

q(D,D∗) ≥ −α′/2. By the definition of the exponential mechanism, this D∗ is out-
put with probability proportional to at least exp(−εα

′

8 ). Similarly, there are at most
|X|log |C|/α2

databases D′ ∈ R such that q(D,D′) ≤ −α′. Hence, by a union bound, the
probability that the exponential mechanism outputs some D′ with q(D,D′) ≤ −α′ is
proportional to at most |X|log |C|/α2

exp(−εα
′

4 ). Therefore, if we denote by A the event
that the Net mechanism outputs some D∗ with q(D,D∗) ≥ −α′/2, and denote by B the
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event that the Net mechanism outputs some D′ with q(D,D′) ≤ −α′, we have:

Pr[A]

Pr[B]
≥

exp(−εα
′

8 )

|X|log |C|/α2 exp(−εα
′

4 )

=
exp( εα

′

8 )

|X|log |C|/α2

Note that if this ratio is at least 2/δ, then we will have proven that the Net mechanism
is (α′, δ) useful with respect to C.

Recalling that α′ = αn+ 4 ln(2/δ)/ε, we have that this inequality holds whenever:

ε

8
αn+

ln(2/δ)

2
≥ log |C| log |C|

α2
+ ln(2/δ)

Solving for α, we find that this is the case whenever:

α ≥
(

8 log |C| log |X|
εn

+
4

ε
ln

(
2

δ

))1/3

Finally, we remark that whenever n = Ω(ln(1/δ)/ε) (a necessity for the above bound
to be nontrivial), the optimal value of α can be approximated within a small constant
factor by using n̂ instead of n.
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