
Planning in the Presence of Cost Functions
Controlled by an Adversary

H. Brendan McMahan mcmahan@cs.cmu.edu
Geoffrey J Gordon ggordon@cs.cmu.edu
Avrim Blum avrim@cs.cmu.edu

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213 USA

Abstract

We investigate methods for planning in a
Markov Decision Process where the cost func-
tion is chosen by an adversary after we fix
our policy. As a running example, we con-
sider a robot path planning problem where
costs are influenced by sensors that an adver-
sary places in the environment. We formu-
late the problem as a zero-sum matrix game
where rows correspond to deterministic poli-
cies for the planning player and columns cor-
respond to cost vectors the adversary can se-
lect. For a fixed cost vector, fast algorithms
(such as value iteration) are available for solv-
ing MDPs. We develop efficient algorithms
for matrix games where such best response
oracles exist. We show that for our path plan-
ning problem these algorithms are at least an
order of magnitude faster than direct solution
of the linear programming formulation.

1. Introduction and Motivation

Imagine a robot in a known (previously mapped) en-
vironment which must navigate to a goal location. We
wish to choose a path for the robot that will avoid
detection by an adversary. This adversary has some
number of fixed sensors (perhaps surveillance cameras
or stationary robots) that he will position in order to
detect our robot. These sensors are undetectable by
our robot, so it cannot discover their locations and
change its behavior accordingly. What path should
the robot follow to minimize the time it is visible to
the sensors? Or, from the opponent’s point of view,
what are the optimal locations for the sensors?

We assume that we know the sensors’ capabilities.
That is, given a sensor position we assume we can

calculate what portion of the world it can observe. So,
if we know where our opponent has placed sensors, we
can compute a cost vector for our MDP: each entry
represents the number of sensors observing a partic-
ular world state. In that case, we can apply efficient
planning algorithms (value iteration in stochastic en-
vironments, A* search in deterministic environments)
to find a path for our robot that minimizes its total ob-
servability. Of course, in reality we don’t know where
the sensors are; instead we have a set of possible cost
vectors, one for each allowable sensor placement, and
we must minimize our expected observability under
the worst-case distribution over cost vectors.

In this paper we develop efficient algorithms to solve
problems of the form described above, and we exper-
imentally demonstrate the performance of these al-
gorithms. In particular, we use Benders’ decompo-
sition (Benders, 1962) to capitalize on the existence
of best-response oracles like A* and value iteration.
We generalize this technique to the case where a best-
response oracle is also available for the adversary. Be-
fore developing these algorithms in detail, we discuss
different ways to model the general problem we have
described, and discuss the variation we solve.

Our algorithms are practical for problems of realis-
tic size, and we have used our implementation to find
plans for robots playing laser tag as part of a larger
project (Rosencrantz et al., 2003). Figure 1 shows
the optimal solutions for both players for a particu-
lar instance of the problem. The map is of Rangos
Hall at Carnegie Mellon University, with obstacles cor-
responding to overturned tables and boxes placed to
create an interesting environment for laser tag experi-
ments. The optimal strategy for the planner is a distri-
bution over paths from the start (s) to one of the goals
(g), shown in 1A; this corresponds to a mixed strat-
egy in the matrix game, that is, a distribution over

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

the rows of the game matrix. The optimal strategy
for the opponent is a distribution over sensor place-
ments, or equivalently a distribution over the columns
of the game matrix. This figure is discussed in detail
in Section 4.

2. Modeling Considerations

There are a number of ways we could model our plan-
ning problem. The model we choose, which we call the
no observation, single play formulation, corresponds to
the assumptions outlined above. The opponent is re-
stricted to choosing a cost vector from a finite though
possibly large set. The planning agent knows this set,
and so constructs a policy that optimizes worst-case
expected cost given these allowed cost vectors. Let
ΠD be the set of deterministic policies available to the
planning agent, let K = {c1, . . . , ck} be the set of cost
vectors available to the adversary, and let V (π, c) be
the value of policy π ∈ ΠD under cost vector c ∈ K.
Let ∆(·) indicate the set of probability distributions
over some set. Then our algorithms find the value

min
p∈∆(ΠD)

max
q∈∆(K)

Eπ∼p,c∼q[V (π, c)],

along with the distributions p and q that achieve this
value. In the next section we discuss the assumptions
behind this formulation of the problem in more detail,
and examine several other possible formulations.

2.1. Possible Problem Formulations

Our most limiting assumption is that our planning
agent cannot observe the adversary’s affect on the cost
vector. In our example domain, the robot incurs fixed,
observable costs for moving, running into objects, etc.;
however, it cannot determine when it is being watched
and so it cannot determine the cost vector selected by
the adversary. This is a reasonable assumption for
some domains, but not others. If the assumption does
not hold, our algorithms will produce suboptimal poli-
cies: for example, we would not be able to plan to
check whether a path was being watched before fol-
lowing it.

The no-observation assumption, while sometimes un-
realistic, is what allows us to find efficient algorithms.
Without this assumption, the planning problem be-
comes a partially-observable Markov decision process:
the currently-active cost vector is the hidden state
and the costs incurred are observations. POMDPs are
known to be difficult to solve (Kaelbling et al., 1996);
on the other hand, the planning problem without ob-
servations has a poly-time solution.

In addition to the POMDP formulation, our problem

can also be framed in an online setting where the MDP
must be solved multiple times for different cost vectors.
The planning agent must pick a policy for the nth
game based on the cost vectors it has seen in the first
n− 1 games. The goal is to do well in total cost, com-
pared to the best fixed policy against the opponent’s
sequence of selected cost vectors. To obtain tractable
algorithms we still make the no-observation assump-
tion, but it is not necessary to assume the opponent
chooses cost vectors from a finite set. When this
formulation is applied to shortest path problems on
graphs, it is the online shortest path problem for which
some efficient algorithms are already known (Takimoto
& Warmuth, 2002). We hope to explore this formula-
tion in more detail in the future.

It is worth noting the relationship between our prob-
lem and stochastic games (Filar & Vrieze, 1992). Our
setting is more general in some ways and less general
in others: we allow hidden state (the cost function),
but stochastic games allow players to make a sequence
of interdependent moves while we require both players
to select their policies simultaneously at the outset.

Our algorithm is similar in approach to Bagnell et al.
(2001), but in that work the hidden information is the
exact dynamics model, not the cost function.

2.2. Example Problem Domains

In this section we describe some additional domains
where our formulation is useful, and also some different
interpretations of the model.

In general, the no-observation assumption is applicable
in two cases: when observations are actually impossi-
ble, and when observations are possible, but once they
have been made there is nothing to be done. The way
we initially phrased our robot path-planning problem,
it falls in the first case: the sensors cannot be detected.
On the other hand, if we can detect a sensor but have
already lost the game once we detect it, the problem
falls in the second case.

It is easy to show that having the opponent initially
pick some cost vector from a distribution q is equiv-
alent in expectation to letting the opponent indepen-
dently pick a cost vector from q at each timestep. Con-
sider again the question of monitoring an area with se-
curity cameras, but suppose the cameras have already
been placed. Further, suppose we have only a single
video monitor so the surveillance operator can observe
the output from only one camera at each timestep.
The operator should choose a camera to monitor from
distribution q at each timestep in order to maximize
the time that an intruder is observed.

Figure 1. Planning in a robot laser tag environment. Part A: A mixture of optimal trajectories for a robot traveling
from start location (s) to one of three goals (g). The opponent can put a sensor in one of 4 locations (x), facing one
of 8 directions. The widths of the trajectories correspond to the probability that the robot takes the given path. Parts
B,C,D,E: The optimal opponent strategy randomizes among the sensor placements that produce these four fields of view.

So far we have imagined an adversary selecting one
cost vector from a set of cost vectors; however, our
formulation applies to the case where the actual cost
is given by the highest cost of the chosen policy with
respect to any of the cost vectors. For example, sup-
pose there is a competition to control a robot per-
forming an industrial welding task. In the first round
the robots will be evaluated by three human judges,
each of which has the ability to remove a robot from
consideration. It is known that one judge will prefer
faster robots, another will be more concerned with the
robots’ power consumption, and another with the pre-
cision with which the task is performed. If the task
is formulated as an MDP, then each judge’s preference
can be turned into a cost vector, and our algorithm will
find the policy that maximizes the lowest score given
by any of the three judges. The policy calculated will
be optimal if all three judges evaluate the policy, or if
an adversary picks a distribution from which only one
judge will be chosen.

In general, our techniques apply any time we have a
set of cost vectors K, a set of policies ΠD, a fast al-
gorithm to solve the problem given a particular cost
vector c ∈ K, and we can randomize over the set of
policies ΠD. Here the term “policy” means only a pos-
sible solution to the given problem. We now proceed
with some background on MDPs and then present our
algorithms for solving these problems.

3. Background

Consider an MDP M with a state set S and action
set A. The dynamics for the MDP are specified for all
s, s′ ∈ S and a ∈ A by Pass′ , the probability of moving
to state s′ if action a is taken from state s. In order to
express problems regarding MDPs as linear programs,
it is useful to define a matrix E as follows: E has one
row for every state-action pair and one column per
state. The entry for row (s, a) and column s′ contains
Pass′ for all s 6= s′, and Pass − 1 for s = s′. A cost
function for the MDP can be represented as a vector
c that contains one entry for each state-action pair
(s, a) indicating the cost of taking action a in state
s. A stochastic policy for an MDP is a mapping π :
S × A → [0, 1], so that π(s, a) gives the probability
an agent will take action a in state s. Thus, for all
s we must have

∑
a∈A π(s, a) = 1. A deterministic

policy is one that puts all probability on a single action
for each state, so that it can be represented by π :
S → A. The Markov assumption implies that we do
not need to consider history1 dependent policies; the
policies we consider are stationary, in that they depend
only on the current state. For an MDP with a fixed
cost function c there is always an optimal deterministic

1We assume the standard definition of the history,
where it contains only states and actions. If costs incurred
appear in the history then our formulation does not apply,
as we are in the POMDP case.

policy, and so stochastic policies play a lesser role. In
our adversarial formulations, however, optimal policies
may be stochastic.

We are primarily concerned with undiscounted short-
est path optimality: that is, all states have at least one
finite-length path to a zero-cost absorbing state, and
so undiscounted costs can be used. Our results can
be adapted to discounted infinite horizon problems by
multiplying all the probabilities Pass′ by a discount fac-
tor γ when the matrix E is formed. The results can
also be extended to an average reward model, but this
requires slightly more complicated changes to the lin-
ear programs introduced below.

There are two natural representations of a policy for a
MDP, one in terms of frequencies and another in terms
of total costs or values. Each arises naturally from a
different linear programming formulation of the MDP
problem. For any policy we can compute a cost-to-go
function,2 vπ : S → R, that associates with each state
the total cost vπ(s) that an agent will incur if it follows
π from s for the rest of time. If π is optimal then the
policy achieved by acting greedily with respect to vπ
is optimal.

The optimal value function for an MDP with cost vec-
tor c and fixed start state3 s can be found by solving
the following linear program:

max
v

v(s) subject to (1)

Ev + c ≥ 0.

The set of constraints Ev + c ≥ 0 is equivalent to the
statement that v(s) ≤ c(s, a) +

∑
s′∈S Pass′v(s′) for all

s ∈ S and a ∈ A.

Fixing an arbitrary stochastic policy π and start state
s uniquely determines a set of state-action visitation
frequencies fs(π). We omit the s when it is clear from
context. The dual of (1) is the linear program whose
feasible region is the set of possible state-action visi-
tation frequencies, and is given by

min
f
f · c subject to (2)

ET f + ~s = 0, f ≥ 0

where ~s is the vector of all zeros except for a 1 in the
position for state s. The constraints ET f + ~s = 0 re-
quire that the sum of all the frequencies into a state
x equal the sum of all the frequencies out of x. The

2The term cost-to-go function is more natural when we
think of costs for actions; the term value function is used
when rewards are specified.

3This can easily be generalized to a start-state distribu-
tion.

objective f ·c represents the value of the starting state
under the policy π which corresponds to f . For any
cost vector c′ we can compute the value of π as f(π)·c′.
We also use the fact that every stochastic policy (when
represented as state-action visitation frequencies) can
be represented as a convex combination of determinis-
tic policies, and every convex combination of determin-
istic policies corresponds to some stochastic policy. A
detailed proof of this fact along with a good general in-
troduction to MDPs can be found in (Puterman, 1994,
Sec. 6.9).

4. Solving the Single-Play Formulation

Suppose we have an MDP with known dynamics and
fixed start state s, but an adversary will select the cost
function from K = {c1, . . . , ck}. We can formulate
the problem as a zero-sum matrix game: the possible
pure strategies for the planning player (our robot) are
the set of stationary deterministic policies ΠD for the
MDP, and the pure strategies for the opponent are the
elements of K (possible sensor configurations). Note
that the game matrix is finite because, by assumption,
K is finite, and there are a finite number of stationary
deterministic policies for a given MDP. If we fix a pol-
icy πi and cost vector cj , then the value of the game
is f(πi) · cj .
A mixed strategy given by a distribution p : ΠD →
[0, 1] for the row player is equivalent to the stochas-
tic policy with state-action visitation frequencies f =∑
π∈ΠD

f(π)p(π). Similarly, a mixed strategy q : K →
[0, 1] for the column player corresponds to a point in
the convex set Q whose corners are the elements of K.

Let Π be the set of all mixed strategies (stochastic
policies). Our goal is to find a π∗ ∈ Π and c∗ ∈ Q
such that

min
π∈Π

max
c∈Q

f(π) · c = max
c∈Q

min
π∈Π

f(π) · c = f(π∗) · c∗.

That is, we wish to find a minimax equilibrium for a
two player zero sum matrix game.

We can extend (2) in a straightforward way to solve
this problem: we simply introduce another variable z
which represents the maximum cost of the policy f
under all possible opponent cost vectors. Letting C be
the matrix with columns c1, . . . , ck, we have:

min
z,f

z subject to (3)

ET f + s = 0

1 · z + CT f ≤ 0, f ≥ 0

The primal variables f of (3) give an optimal mixed
strategy for the planning player. Taking the dual

of (3), we have

max
v,q

v · s subject to (4)

Ev + Cq ≥ 0,

1 · q = 1, q ≥ 0

where q gives the optimal mixture of costs for the ad-
versary, and v is a cost-to-go function when playing
against this distribution. Note that v induces a deter-
ministic policy that gives a best response if the oppo-
nent fixes the distribution q over cost vectors, but in
general this pair of strategies will not be a minimax
equilibrium.

Figure 1 shows a solution to the robot path planning
problem formulated in this way. The left portion, A,
shows the minimax strategy for the planner, that is a
distribution p over the start - goal paths that make up
ΠD for this problem. The four right-hand panels, B,
C, D, and E correspond to elements of K, cost vectors
shown as the fields of view of sensor placements. These
four are the most likely cost vectors selected by the
opponent; they receive weights 0.18, 0.42, 0.11, and
0.28 respectively. The remainder of the probability
mass is on other sensor placements.

4.1. An Algorithm using Benders’
Decomposition

Our iterative algorithm is an application of a general
method for decomposing certain linear programs first
studied by Benders (1962). We focus on the appli-
cation of this technique to the problem at hand, and
refer the reader to other sources for a more general
introduction (Bazaraa et al., 1990).

Our algorithm is applicable when we have an oracle
R : Q → Π that for any cost vector c provides an
optimal policy π. The algorithm requires that π be
represented by its state-action frequency vector f(π),
and so we writeR(c) = f for c ∈ Q. If the actual oracle
algorithm provides a policy as a cost-to-go function
we can calculate f(π) with a matrix inversion or by
iterative methods.

If we let θ(q) be the optimal value of (1) for a fixed q
and c = Cq, then we can rewrite (4) as the program

max
q
θ(q) subject to (5)

1 · q = 1, q ≥ 0

Unfortunately, θ(q) is not linear so we cannot solve
this program directly. However, it can be solved via a
convergent sequence of approximations that capitalize
on the availability of our oracle R.

The algorithm performs two steps for each iteration.
On iteration i, first we solve for an optimal mixture of
costs qi under the assumption that the planner is only
allowed to select a policy from a restricted set F =
{π1, π2, . . . , πi}. Then, we use our oracle to compute
R(Cqi) = πi+1, an optimal deterministic policy with
respect to the fixed cost vector c = Cqi. The policy
πi+1 is added to F , and these steps are iterated until
an iteration where πi+1 is already in F .

Let v be the value of (2). Given a policy π ∈ F , for any
cost mixture q′ we have the bound θ(q′) ≤ f(π) · Cq′,
the value of the game when we always play π. Thus,
each π gives an upper bound ∀q′, v ≤ f(π) ·Cq′. Sim-
ilarly, fixing a cost mixture q, we know R(q) = f
is the optimal response, and thus we have a bound
∀f ′, θ(q) ≥ f ′ · Cq, because we cannot do better
against q than playing f . Thus, v ≥ f ·Cq. In practice
we check for the convergence of the algorithm by mon-
itoring these two bounds, allowing us to halt on any
iteration with a known bound on how far the current
solution might be from v.

All that remains is to show how to find the optimal
cost mixture qi given that the planner will select a
policy from the set F = {f(π1), f(π2), . . . , f(πi)} of
feasible solutions to (2). This problem can be solved
with the linear program

max
q
θ subject to (6)

θ ≤ f(πj)Cq for 1 ≤ j ≤ i,
which is essentially the same program as (3), where f
is restricted to be a member of F rather than an ar-
bitrary stochastic policy. It is also the linear program
for solving the matrix game that is defined by the sub-
matrix of the overall game containing only the rows
corresponding to elements of F . This is the “master”
program of the Benders’ decomposition.

The algorithm can be summarized as follows:

• Pick an initial value for q, say the uniform distri-
bution, and let F = {}.

• Repeat:

– Use the row oracle R to find an optimal pol-
icy f for the fixed cost vector c = Cq. If
f ∈ F , halt. Otherwise, add f to F and con-
tinue.

– Solve the linear program (6), and let q be the
new optimal cost mixture determined.

The optimal cost mixture is given by the q found in
the last iteration. The optimal policy for the plan-
ning player can be expressed as a distribution over

the policies in F . These values are given by the dual
variables of (6). The convergence and correctness of
this algorithm are immediate from the corresponding
proofs for Benders’ decomposition. We show in Sec-
tion 5 that the sequence of values converges quickly in
practice. We refer to this algorithm as the Single Ora-
cle algorithm because it relies only on a best-response
oracle for the row player.

4.2. A Double Oracle Algorithm

The above algorithm is sufficient for problems when
the set K is reasonably small; in these cases solving
the master problem (6) is fast. For example, we use
this approach in our path planning problem if the op-
ponent is confined to a small number of possible sensor
locations and we know that he will place only a single
sensor. However, suppose there are a relatively large
number of possible sensor locations (say 50 or 100),
and that the adversary will actually place 2 sensors. If
the induced cost function assigns an added cost to all
locations visible by one or more of the sensors, then we
cannot decouple the choice of locations, and so there
will be

(
100
2

)
possible cost vectors in K. The Single

Oracle algorithm is not practical for a problem with
this many cost vectors; simply the memory cost of rep-
resenting them all would be prohibitive.

We now derive a generalization of the Single Oracle
algorithm that can take advantage of best response or-
acles for both the row and column players. We present
this algorithm as it applies to arbitrary matrix games.
Let M be a matrix defining a two player zero-sum ma-
trix game. An entry M(r, c) is the cost to the row
player given that the row player played row r and the
column player played c. Let VG be the value of the
game, and let VM (p, q) be the value of the game under
strategies p and q. We omit the M when it is clear
from context.

Our algorithm assumes the existence of best response
oracles R and C for the row and column player respec-
tively. That is, given a mixture q on the columns of
M , R(q) = r computes the row r of M that is a best
response, and given a mixture p on the rows of M ,
C(p) = c computes a column c of M that is a best
response. For an arbitrary matrix such an oracle may
be achieved (say for the row player) by finding the
minimum entry in Mq. Perhaps surprisingly, we show
that even using such a naive oracle can yield perfor-
mance improvements over the Single Oracle algorithm.
If sensor fields of view have limited overlap, then a
fast best response oracle for multiple sensor placement
can also be constructed by considering each sensor in-
dependently and using the result to bound the cost

vector for a pair of sensors.

The algorithm maintains sets R̄ of all strategies the
row player has played in previous iterations of the al-
gorithm (this set corresponds to the set F from the
previous algorithm), and similarly maintains a set C̄
of all the columns played by the column player. We
initialize R̄ with an arbitrary row, and C̄ with an ar-
bitrary column. The algorithm then iterates over the
following steps. On iteration i:

• Solve the matrix game where the row player can
only play rows in R̄ and the column player can
only play columns of C̄, using linear programming
or any other convenient technique. This provides
a distribution pi over R̄ and qi over C̄.

• The row player assumes the column player will
always play qi, finds an optimal pure strategy
R(qi) = ri against qi, and adds ri to R̄. Let v` =
V (ri, qi). Since ri is a best response we conclude
that ∀p V (p, qi) ≥ v`, and so we have a bound on
the value of the game, VG = minp maxq V (p, q) ≥
v`.

• Similarly, the column player picks C(pi) = ci, and
adds ci to C̄. We let vu = V (pi, ci) and conclude
∀q V (pi, q) ≤ vu, and hence VG = maxq minp ≤
vu.

The bounds given above are a direct consequence of
von Neumann’s minimax theorem and the definition
of the value of a game. If on some iteration i, ri is al-
ready in R̄ and ci ∈ C̄, then the algorithm terminates.
As in the Single Oracle algorithm, it will be more con-
venient to simply iterate until vu − v` < ε, where ε is
a parameter.

Theorem 1 The Double Oracle algorithm converges
to a minimax equilibrium.

Proof: Convergence of the algorithm is immedi-
ate because we assume a finite number of rows and
columns. (Eventually R̄ and C̄ include all rows and
columns of M , and the corresponding linear program
is simply the linear program for the whole game.)
Now we prove correctness. Suppose on iteration j
we add neither a new row nor a new column. Since
the algorithm does not add a new row to R̄ then it
must be the case that v` = V (pj , qj), and similarly
vu = V (pj , qj), so v` = vu. It suffices to show pj is a
minimax optimal solution; the fact that q is a maximin
optimal solution follows from an analogous argument.
Let v = v` = vu. Since ∀p V (p, qj) ≥ v, we know
∀p maxq V (p, q) ≥ v. Since ∀q V (pj , q) ≤ v we know

Table 1. Sample problem discretizations, number of sensor
placements available to the opponent, solution time using
Equation 4, and solution time and number of iterations
using the Double Oracle Algorithm.

grid size k LP Double iter
A 54 x 45 32 56.8 s 1.9 s 15
B 54 x 45 328 104.2 s 8.4 s 47
C 94 x 79 136 2835.4 s 10.5 s 30
D 135 x 113 32 1266.0 s 10.2 s 14
E 135 x 113 92 8713.0 s 18.3 s 30
F 269 x 226 16 - 39.8 s 17
G 269 x 226 32 - 41.1 s 15

maxq V (pj , q) ≤ v. Combining these two facts, we
conclude ∀p, maxq(pj , q) ≤ maxq(p, q), and so pj is
minimax optimal. �
If the algorithm ends up considering all of the rows
and columns of M , it will be slower than just solving
the game directly. However, it is reasonable to expect
in practice that many pure strategies will never enter
R̄ and C̄. For example, in our path-planning example
we may never need to consider paths which take the
robot far out of its way, and we certainly never need to
consider paths with possible loops in them. We might
be able to remove these bad pure strategies ahead of
time in an ad-hoc way, but this algorithm gives us a
principled approach.

5. Experimental Results

We model our robot path planning problem by dis-
cretizing a given map at a resolution of between 10
and 50 cm per cell, producing grids of size 269 × 226
to 54 × 45. We do not model the robot’s orientation
and rely on lower level navigation software to move
the robot along planned trajectories. Each cell corre-
sponds to a state in the MDP.

The transition model we use gives the robot 16 actions,
corresponding to movement in any of 16 compass di-
rections. Each state s has a cost weight m(s) for move-
ment through that cell; in our experiments all of these
are set to 1.0 for simplicity. The actual movement
costs for each action are calculated by considering the
distance traveled (either 1,

√
2, or

√
5) weighted by the

movement costs assigned to each cell. For example,
movement in one of the four cardinal directions from
a state u to a state v incurs cost 0.5m(u) + 0.5m(v).

Cells observed by a sensor have an additional cost
given by a linear function of the distance to the sen-
sor. An additional cost of 20 is incurred if observed

by an adjacent sensor, and cost 10 is incurred if the
sensor is at the maximum distance. The ratio of move-
ment cost to observation cost determines the planner’s
relative preference for paths that provide a low proba-
bility of observation versus shortest paths. We assume
a fixed start location for our robot in all problems, so
pure strategies can be represented as paths.

We have implemented both the Single Oracle algo-
rithm and the Double Oracle algorithm and applied
them to this domain. Both algorithms use Dijkstra’s
algorithm as the row oracle, and the column oracle for
the Double Oracle algorithm is the naive method out-
lined in Section 4.2. Our implementation is in Java,
with an external call to CPLEX 7.1 (ILOG, 2003) for
solving all linear programs. For comparison, we also
used CPLEX to solve the linear program 4 directly
(without any decompositions).

All results given in this paper correspond to the map
in Figure 1. We performed experiments on other maps
as well, but we do not report them because the results
were qualitatively similar. We solved the problem us-
ing various discretizations and different numbers of po-
tential cost vectors to demonstrate the scaling proper-
ties of our algorithms. These problem discretizations
are shown in Table 5, along with their Double Oracle
and direct LP solution times. The letters in the ta-
ble correspond to those in Figure 2, which compares
the Double and Single Oracle algorithms. All times are
wall-clock times on a 1 GHz Pentium III machine with
512M main memory. Results reported are the average
over 5 runs. Standard deviations were insignificant,
less than 1/10th of total solve time in all cases. For the
Single and Double Oracle algorithms, non-algorithmic
overhead involved in calling CPLEX is not included in
these times; an implementation in C or using a ver-
sion of CPLEX with Java bindings could completely
bypass this overhead.

Our results indicate that both the Double and Sin-
gle Oracle algorithms significantly outperform the di-
rect LP algorithm. This improvement in performance
is possible because our algorithms take advantage of
the fact that 4 is “almost” an MDP: the row ora-
cle is implemented with Dijkstra’s algorithm, which is
much faster than general LP solvers. The particularly
lopsided times for problems C, D, and E were partly
caused by CPLEX running low on physical memory;
we didn’t try solving the LPs for problems F and G be-
cause they are even larger. One of the benefits of our
decomposition algorithms is their lower memory usage
(they never need to construct the LP 4 explicitly), but
even when memory was not an issue our algorithms
were significantly faster than CPLEX.

0

20

40

60

80

100

120

140

A B C D E F G

T
im

e
in

 S
ec

on
ds

Problem

Single Oracle
Double Oracle

Figure 2. Double and Single Oracle algorithm performance
on problems shown in Table 5.

As Figure 2 shows, the Double Oracle algorithm out-
performs the Single Oracle version for all problems.
The difference is most pronounced on problems with a
large number of cost vectors. The time for solving the
master LPs and for the column oracle are insignificant,
so the performance gained by the Double Oracle algo-
rithm is explained by its implicit preference for mixed
strategies with small support. With small support we
need to represent fewer cost vectors, and explicit rep-
resentation of cost vectors can be a significant perfor-
mance bottleneck. For example, in Problems F and
G each cost vector has length |S||A| = 269 · 226 · 16,
so storing 32 cost vectors uses approximately 236M of
memory.

6. Conclusions and Future Work

We have described the problem of planning in an MDP
when costs are influenced by an adversary, and we have
developed and tested efficient, practical algorithms for
our formulation of the problem.

The most important missing element is the ability to
plan for future observations. It would be interesting
to see if there is a formulation of the problem that al-
lows observations of costs to be accounted for without
requiring a full POMDP solution. We also hope to
investigate the online version of this problem in more
detail. Finally, we intend to experiment with even
faster row oracles, since row oracle calls take 90% or
more of the total run time in our experiments: for ex-
ample, instead of Dijkstra’s algorithm we could use an
incremental A∗ implementation (Koenig & Likhachev,
2001).

Acknowledgments

We would like to thank the reviewers for a number of
helpful suggestions. This work was supported in part
by NSF grant CCR-0105488 NSF-ITR CCR-0122581
and by AFRL contract F30602–01–C–0219, DARPA’s
MICA program. The opinions and conclusions are the
authors’ and do not reflect those of the US government
or its agencies.

References

Bagnell, J., Ng, A. Y., & Schneider, J. (2001). Solv-
ing uncertain markov decision problems (Techni-
cal Report CMU-RI-TR-01-25). Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA.

Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (1990).
Linear programming and network flows. John Wiley
& sons.

Benders, J. F. (1962). Partitioning procedures for
solving mixed-variable programming problems. Nu-
merische Mathematik, 4, 238–252.

Filar, J., & Vrieze, O. (1992). Weighted reward criteria
in competitive markov decision processes. ZOR -
Methods and Models of Operations Research, 36, 343
– 358.

ILOG (2003). CPLEX optimization software. http:

//www.ilog.com/products/cplex/index.cfm.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R.
(1996). Planning and acting in partially observ-
able stochastic domains (Technical Report CS-96-
08). Brown University.

Koenig, S., & Likhachev, M. (2001). Incremental A*.
Advances in Neural Information Processing Systems
14.

Puterman, M. L. (1994). Markov decision processes:
Discrete stochastic dynamic programming. Willey
Interscience.

Rosencrantz, M., Gordon, G., & Thrun, S. (2003). Lo-
cating moving entities in dynamic indoor environ-
ments with teams of mobile robots. AAMAS 2003.

Takimoto, E., & Warmuth, M. K. (2002). Path ker-
nels and multiplicative updates. Proceedings of the
15th Annual Conference on Computational Learning
Theory. Springer.

