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Abstract 1 Introduction

Many natural games have both high and low cost Naklmderstanding thguality of Nash equilibria in a game has
equilibria: their Price of Anarchy is high and yet theibeen a major focus of algorithmic game theory. The main
Price of Stability is low. In such cases, one could hope maotivation is to understand what is the additional cost that
move behavior from a high cost equilibrium to a low co$$ incurred when we assume that agents are behaving in a
one by a “public service advertising campaign” encouragistrategic manner, rather than performing a global optimiza
players to follow the low-cost equilibrium, and if everyion.
player follows the advice then we are done. However, the Koutsoupias and Papadimitriou [14] proposed the no-
assumption thagveryondollows instructions is unrealistic. tion of Price of Anarchy (PoAgs the ratio of the cost of the
A more natural assumption is that some players will followorst Nash equilibrium to the social optimum [16]. The PoA
them, while other players will not. In this paper we considé&ias been studied for a large variety of games, including rout
the question of to what extent can such an advertisimg, network design with cost-sharing, job scheduling; net
campaign cause behavior to switch from a bad equilibriuwork creation etc. (see [17, 9, 12, 2, 10, 13]). While the PoA
to a good one even if only a fraction of people actualtpkes a worst-case view regarding the resulting Nash equi-
follow the given advice, and do so only temporarily. Unlikébrium, the Price of Stability (PoS}4, 8] takes the reverse
the “value of altruism” model, we assume everyone williew, and considers the ratio of the lowest-cost Nash datuili
ultimately act in their own interest. rium to the social optimum. In fact, for many natural games
We analyze this question for several important aride Price of Anarchy may be very large while the Price of
widely studied classes of games including network desi§tability is quite low. For example, in job scheduling on un-
with fair cost sharing, scheduling with unrelated machjneglated machines the Price of Anarchy is unbounded while
and party affiliation games (which include consensus atiere always is a Nash equilibrium which is socially optimal
cut games). We show that for some of these games (s@@hd hence the Price of Stability 13. Another example is
as fair cost sharing), a randomfraction of the population fair cost-sharing games with players, where the Price of
following the given advice is sufficient to get a guarantenarchy is©(n) and the Price of Stability i® (logn).
within an O(1/«) factor of the price of stability for any In cases where there are both high and low cost Nash
«a > 0. For other games (such as party affiliation gameg)uilibria, a central authority could hope to “move” belavi
there is a strict threshold (in this case< 1/2 yields almost from a high cost equilibrium to a low cost one by running
no benefit, yetw > 1/2 is enough to reach near-optimah public service advertising campaign promoting the better
behavior). Finally, for some games, such as schedulifighavior. If indeedveryon€ollows the given advice, then
no valuea < 1 is sufficient. We also consider a “viralwe reach the desired equilibrium. This has motivated much
marketing” model in which certain players are specificallyf the research on price of stability [4]. The starting point
targeted, and analyze the ability of such targeting to imftee of our work, however, is the realization that it is quite a
behavior using a much smaller number of targeted playersot to assume that everyone will follow any given piece
of advice, even if the behavior is optimal if everyone else
follows it as well. A more realistic assumption is that we
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is even a small constant fractioiot paying attention enough O((logn)/«) from the optimal solution. Recall that
to cause the whole thing to unravel? What we show is that the price if stability is©(logn) for this game, so the

certain well-studied games are quite resilient to thisrsgt difference in guarantees is on{y(1/«), whereas the
resulting in low-cost equilibria for any constamt> 0; some Price of Anarchy i (n). Our positive result regarding
have a threshold property (e.g., producing good equililoria fair cost-sharing extends to the case where we add to the
a > 1/2 but poor equilibria forx < 1/2) and some perform cost model a linear latency function which depends on
poorly for all constantv < 1. the load observed on the edges; the proof for this case

As a motivating example consider a traffic control set- involves analyzing a related “shadow” garhe.
ting. Suppose that currently we have reached some equi- . . : .
librium which has a high average latency. The authorities® For job schedulmg_ on unrelated mgchmes (Section 4)
would like to change route selections in order to improve the we ShOV.V a negat|v_e resulf[, showing that fm ~
social welfare. One possible way of changing a driver's pre- " mathne§, even 'f, we pick — 2 .Of the n jobs,
ferred route is by posting advertisements (e.g., road }¥igns ther_g IS still a p053|b|l!ty of reaching a pure Nash
suggesting an alternative (for exampl&he best route to eq“_"'b”“m whose cost is unbounded compar_ed to the
reach the bridge is ). Some drivers would follow the ad- so_C|aI opt|mgm. We_ also show_for two ma(_:hlne_s and
vertisements (road signs) while others would ignore them " JOb_S’_ _that if we P'Ck"/2 — 1 jobs, th_e_re s still a
and maybe even try to minimize their driving time given p035|p|llty of reaching a pure Nash eqwhbpum whose
that only some drivers follow the advertisement and switch cost is unbounded compared to the_soual optimum.
routes. We would like to assume that eventually every driver We complement those_ results showing that there is
would act to minimize driving time conditioned on the be- ~ 2IWays a setofi —n/m jobs, such that any pure Nash
havior of the others (and thus the advertisements have a only equilibrium we reach is socially optimal.

limited time effeCt). The hOpe is that by ha.Ving some driVerS. For party affiliation games (Section 5) where p|ayers
switch routes, we would converge eventually to a better-over  have degreev(logn) we show a threshold property:
all equilibrium. A similar motivation can be given to therfai any value ofa < 1/2 is not sufficient to improve the
cost-sharing games which we discuss in this paper. The cost equilibrium beyond the2(n?) price of anarchy, while

of an edge in this case can be viewed as the maintenance costany valuea > 1/2 is sufficient to produce behavior
of that road segment, and the player’s cost can be viewed as within anO(1) factor of optimal. In the case of players
paying road tolls to cover the maintenance cost of the road \ith low degree, we show that there is a set of players
segments the player uses. of size 3n, for some constant > 3 > 1/2, such that

‘To model this type of scenario we introduce the fol- it they switch their action, the dynamics will result in a
lowing advertisement modelin this model, the authority good equilibrium.

first suggests to each player a proposed action, and each

player accepts the proposal with some (constant) probaaplated Work: Itis worthwhile to compare and contrast our
ity . The players that accept the new action are called th@del with that of Value of Altruism [18] and Strong Price
receptiveplayers (since they are receptive to the advertisif§ Anarchy [3]. The Value of Altruism [18] assumes that
campaign), and they stay with the new action whilertbe- the authorities control some fraction of the players (or jlow
receptiveplayers move to some arbitrary Nash equilibriurﬁ”d this part never behaves in a strategic way. In contrast we
for themseleves (given that the receptive players’ actaas assume that the receptive players return (eventually)ap pl
fixed). Then all players follow a best response dynamig§ategically, and hence the dynamics always converge to a
and converge to some pure Nash equilibrium for the entere Nash equilibrium. Thé-Strong Price of Anarchy [3]
game (we will only consider games where the best respof"@;@'ﬁes on those equilibria such that no subset of at most
dynamics is guaranteed to converge to a pure Nash equiﬁbolayers can deviate arall strictly benefit; thus it is like
rium). a model of stability when players can intelligently form
Our Results: We consider three classes of gamdair coalitions. In contrast, we consider players that are more

cost-sharinggames,job scheduling on unrelated machinémlllpp'i m_thta:[husugl N?Sh dsben;e,_exc?pt :ﬁmaframn are
games, angbarty affiliation games. For simplicity assumeV!'INg to give the advertisedbehaviora try. 1hetwo S

we advertise the socially optimal solution (although alf O&oncept_s are incomparable in the'f final guarantee_s. For job
results apply if we start with any approximation of théChedu“r.'g on two unr.elafced machines, 2h8trong Price Of.
optimal solution, including the best Nash equilibrium, arﬁnar_chy isO(n) [3],wh|le n gurmodelwe showthat_gvgn i
the guarantees degrade proportionally to the approximaﬁ%e pickn/2 —1jobs, the ratio of the cost of the equilibrium

factor). Our main results are the following:
. . . TWe remark that in both cases, after modifying a constantifraof the
e For fair cost sharing games (Section 3) we show th@yers actions the social cost can still be quite high,feoresult can not

for any «, the expected cost of the new equilibrium ise derived by the standard potential-function argument.



produced to OPT can still be unbounded. On the other hatitg social optimum, i.e.(max,cxr(g) cost(s))/OPT(G).
one can also show a reverse example, of a high cost strdig Price of Stability(PoS) is the ratio between the mini-
equilibrium [3] where modifying the action of any single jobmum cost of Nash equilibrium and the social optimum, i.e.,
would lead to an optimal outcome. (mingepr(gy cost(s))/OPT(G).

Charikar et al. [5] consider fair cost sharing for the case The main model we introduce and study in this paper
that the graph isindirectedand all players have a commorns one that we call thedvertising model In this model,
sink, and show that good equilibria can be reached bythe authority first suggests to each player an alternative
process in which players enter one at a time and then undeagtion, and each player accepts the proposed action with
best-response dynamics. However, for directed graphs, isbme (constant) probability. The players that accept the
easy to construct simple examples where such a process fa#ls action are called receptive players, and they stay with
and players reach an equilibrium that1$n) from optimal. the new action while the non-receptive players move to an
This further motivates our work as it shows that very baatbitrary Nash equilibrium for themselves (given that the
equilibria can be reached by natural dynamics in naturakceptive players actions are fixed). Then all players follo

games. an arbitrary best response dynamics and converge to some
pure Nash equilibrium (we will only consider games where
2 The Model the best response dynamics is guaranteed to converge to a

A game is denoted by a tuplg =< N, (S;), (cost;) > Pure Nash equilibrium). We define this model formally in
where N is a set ofn players,sS; is the finite action spacefigure 1.

of playeri € N, andcost; is the cost function of player — _
The joint action space of the playersis= S; x ... x S,,. Figure 1 Advertising model

For a joint actions € S we denote bys_; the actions of Input: Gameg, parametety > 0. o
playersj # i, i.€.,5_; = (S1,..., Si—1,8i—1, ..., Sn). The Initially players are playing some joint acticfi** € S.
cost function of playei maps a joint action € S to a real
non-negative number, i.ecost; : S — RT. Every game
has associated a social cost functigist : S — RT that
maps a joint action to a non-negative real value. In the cases
discussed in this paper the social cost is a simple function
of the costs of the players. For example, we discuss the
sum, i.e.,cost(s) = > | cost,(s), and the maximum, 2. Each player independently decides to follow or not
i.e., cost(s) = max;_, cost;(s). (Inthe context of load to follow the proposed actiogt? by flipping a coin of
balancing games we call the maximum social function the biasa. Let R be set of players who decide to follow the
makesparsocial cost function.) The optimal social cost proposal - we will call them theeceptive playersEach
is OPT(G) = minges cost(s). We sometimes overload playeri € R now switches to playing;.ld_

notation and us®PT for a joint actions that achieves cost

1. We use an advertising campaign and propose an action
to each player. Formally, let*d = advertise(G)

be the advertised behavior. (Note? is selected only
based on the description of the gaghand independent

of the initial actionss®™.)

OPT(G). 3. The non-receptive players (playersin\ R) settle on
Given a joint actions, the Best Response (BR)f a Nash equilibriums™” for themselves, given that the
player i is the set of actionsBR;(s) that minimizes its receptive players plag*?. Namely, for each P'S\yef
cost, given the other players actions;, i.e., BR;(s_;) = j € N\ R we have thats}” € BR;(s";s%').
argminges, cost;(a,s_;). The equilibriums™ for players inN \ R might be
A joint actions € S is apure Nash Equilibrium (NE) adversarially selectedLet s™? = (s""; s%') be the

if no playeri € N can benefit from unilaterally deviating ~ behavior at this point.
to another action, namely, every player is playing a besEl
response action im, i.e.,s; € BR;(s_;) for everyi € N.
A best response dynamics is a process in which at each
time step, some player that is not playing a best response
switches its action to a best response action, given thewurr
joint action. In this paper we will concentrate on games in
which any best response dynamics converges to a pure Nash
equilibrium (which are equivalent to the class of ordinal
potential games [15]). When we refer later to aadvertising strategyve mean
Let N(g) be the set of NaSh_eqUi"_bria of the gamg joint action s*¢ = advertise(G). Given a set of
G. The Price of Anarchy(PoA) is defined as the ra-receptive players, there is a set/(s2?, R) which includes
tio between the maximum cost of Nash equilibrium ang)| the equilibrias’ that the dynamics could reach having

. The players inR stop following the advertising cam-
paign, and the entire set of playe¥sundergoes a best
response dynamics until a Nash equilibrigmfor the
whole gamej is reached. (We will discuss only games
where the best response dynamics is guaranteed to con-
verge to a pure Nash equilibrium.)




an advertisement®® and a set of receptive playe®. actions € S we have:cost(s) < ®(s) < H(n) - cost(s).
The expected cost of the final equilibriugiven s?¢ is
Eprmax,s ey (sea py cost(s’)]. When we say thaor game
G there exists a strategy for the advertising model whi
has an expected cost of the final equilibrium at m&stve | emma 3.2. Let X be a binomial random variable dis-
mean that there exists a joint actisfi* for G such that tributed Bi(n, p). ThenEx [XLH} 0=
Erlmax,s ey (sea, py cost(s!)] < X. e

Another natural model we study in this paper istiral Proof: See Appendix. m
mgrketing modelwhere th.e_ only diﬁerence.is that the set  \n\e start with our main result concerning fair cost-
R is not random, but specifically selected with the proposgqaring games.
actions. Formally, we seledt ands?? for i € R based only
on the description of the gam@ but independently of the THEOREM3.1. For the fair cost sharing game there ex-
initial joint action s'**. (Each player € R is assumed to ists a strategy for the advertising model which has an ex-
switch to actions¢?.) Otherwise the viral model is identicalpected cost of the final equilibrium at m@3t(1/a)(logn) -
to the advertising model. cost(OPT)).

The notation and definitions for the specific games

. . . ) of: Fix some optimal solutio®PT. Lets* = OPT,
addressed in the paper are provided n Sections 3, 4 an%cg)’the advertising strategy will be to tell each player
where the appropriate games are studied.

to use his pathP?”” in OPT. Let R be the set of
. receptive players an® = N \ R. For every edge, let
3 Cost Sharing Games noP* denote the number of people who use edge OPT,

In this section we consider fair cost sharing games definge et us decompose this quantity into the numigsf, of
€,

as fO.HOWS' We are given a graphi = (V, £), which can y, qq i setk and the numben°®! of those not inR (both
be directed or undirected, where each edge E has a &R opt opt

nonnegative cost, > 0. There is a sefv = {1,..,n} Of Whicharerandom variables); g™ = n. + n%.

of n players, where player is associated with a source We start by bounding the expected worst-case cost of
and a sinkt;. The strategy set of playeris the setS; the behaviors™*? produced at the end of step three : that
of s; — t; paths. In an outcome of the game, each playér Er[max mei_(enr 1) cost(s™? )], where the max is

7 chooses a Sing|e patﬁL e S;. A Cost_sharing methodtaken over all behaviors™” that are Nash eqUIIIbrIa for
assigns nonnegative cost shares to the players, as a fundll@yersinV\ i given that thedbehaworofplayers}hls sH

of the set of players that choose a path that contains the e¥geWwill call this E[cost(s™*" )] for short. For every edge

e. The social cost of an outconse= (Pi, ..., P,,) is defined ¢ let B. denote the cost of edgefor a non-receptive player
to be cost(Py, ..., Py) = Y., p Ce. Given a vector of i € R under the joint action™¢, and letA. denote the cost
s eees ccu, p, Ce-

A

players’ strategies = (Pi,..., P,), let z. be the number Of edgee for a receptive playei € R under the joint action
of agents whose strategy contains edgeln the fair cost s™*. Let X, = c./(1 + nl%) and letX! = c./nl.
sharing game the cost to agens cost;(s) = Y., &= We clearly haveB, < X. and A, < X{. So, for any
and the goal of each agent is to connect its terminals wilayeri ¢ R we havecost; (P77, s™¢%) < 37 porr Xe
minimum total cost. and for any playei € R we havecost;(PPFT, smed) <

It is well known that fair cost sharing games are poted-__,orr X,. Sinces™*? is an equilibrium for the non-
tial games [15, 4] and the price of anarchy in these gam@%epi[ive players we hawg™ed € BR;(s™¢d) fori € R.
is ©(n) while the price of stability isH (n) [4], where Thjsimplies the following upper bound on the expected total

H(n) =" ,1/i = 6(logn). We show in following that st at the end of step three :
in the fair cost sharing game there exists a strategy for the

advertising model producing an equilibria whose expectBicost(s™*? )] < E[Z Z Xe]+E[Z Z X’].
cost is at most a®W((1/«) log n) factor away from the cost i¢R ec POPT i€R e POPT
of the optimal solution. Thus we get significant benefit fro
advertising in these games. i
Before presenting the proof of our main results W%et'
first give two useful lemmas. The first one is well E[Cost(smed ) < E[Z X, .nopg] +E[Z X! -n"p]fg]-
known characterization of the potential functidn(S) = . ft . “
. ve | fe(z) of these games [15, 4], wherk(z) is . o
(%S%?e%:by éac(h l)Jser when there arasers on edge? : Note thatX/ < 2X. whenn."; > 0. This implies that

Elcost(s™?)] < 3E[) X.-n%P =3 E[X.]-n°P"
LEMMA 3.1. In the fair cost sharing game the for any joint [cost(s = [g ne”] ze: [Xe] - e

The second lemma states the following useful property
8{ a binomial random variable.

Iigearranging the sum over players to be a sum over edges we



So, to complete the proof we have to analyE¢X.]. of congestion games). One can prove a lemma similar to
Lemma 3.2 implies thaE[X,.] is O (c./(a-nSP')) for Lemma 3.1 relating the cost and the value of the potential
nSP* > 1. This implies that the expected cost at the erfdnction for any given joint action. In particular, for line

of step three satisfies: delays we have:

LEmMMA 3.3. Consider the cost sharing game with delays
Elcost(s™)] = O ((l/a) Z ce> where the cost function on edgés f.(z) = c./z + I, - .
e€OPT For any joint actions € S we have:icost(s) < ®(s) <
= O((1/a) cost(OPT)). H(n) - cost(s).

The above equation together with Lemma 3.1 implies that We show here how we can extend our results to deal
the expected value of the potential functidrat the end of With linear delays. The extension is not immediate though
step three is only a®((1/a)logn) factor larger than the since the part of our argument in Theorem 3.1 that says that

cost ofOPT, i.e., after step two, every non-receptive playdras a reasonably
cheap option to try (namely its path @PT) is not clear
E[®(s™)] = O((1/a)(logn) - cost(OPT)). anymore: since the original behavigf’ wasarbitrary there

o ] ~ could exist edges with a much higher number of players on
This implies that the expected cost of the final equilibrium gyem under the joint actiofs?2", s2¢) than inOP'T. In order

the end of step four, i.eE[cost(s/)], is at most that large, 1o prove the desired result we instead argue the existence of
as desired. w a related “shadow” game, whose price of anarchy is not too
Note that in fact the proof of Theorem 3.1 can p@rge, and then relate performance of the behaviors as well
adapted to prove something stronger. as the optimum values between the two games.
THEOREM3.2. Consider fair cost sharing games and d HEOREM3.4. For the cost sharing game with delays
joint action F. Using s = F for the advertising where the cost function on edgeis f.(z) = c./z +
model has an expected cost of the final equilibrium at mdst- = there exists a strategy for the advertising model
O((1/a)(logn) - cost(F)). which has an expected cost of the final equilibrium at most

O((1/a)(logn) - cost(OPT)).
3.1 ExtensionsA well studied extension of the fair cost o . , ad
sharing game is one where instead of a constant¢psach Proof. F'X some optimal solutiorOPT and. I.ets -
edge has a cost (x) that is a nondecreasing but concagivertise(§) = OPT. Namely, the adVSf}'TS'.r‘g strategy
function of the number of playets using that edge [4]. ForWIII be to tell each playet tq use his patir; pt in OPT,
example, this can model a buy-at-bulk economy of scale +0‘?t R be the set O_f receptive players. mZ,R denote the
buying edges that can be used by more players. Notice tAdfnber of people iz who use edge and letng™* denote
the cost of an edge, (z) might increase with the numberth® number of people iIOPT who usec.

of players using it, but the cost per playgiz) = co(z)/z By assumptign, in step tgree all the users naRisettle
decreases if, (z) is concave. We can extend our result t8" SOme equilibrium (givesi’). Letn, denotetthe number
this case as well. of users who are now on edge So,n. > n.. We now

define a new gam@’ with respect to the users iR = N\ R,

THEOREM3.3. For the cost sharing game with nondecreasvhich is a congestion game with a linear latency function
ing concave cost functions (x), there exists a strategy fora.(n) = a. + l. - n, wherea, = c./(1 + n.). Let OPT’
the advertising model which has an expected cost of the fidghote the optimal cost for this gargé
equilibrium at mos((1/a)(logn) - cost(OPT)). We first claim that the behavior at the end of step three is

) ) ] also an equilibrium for users iR if we use the cosh,

Another extension [4] of the fair cost sharing game istead off, on all edges:. In particular, suppose this was

one where each edge has both a cost funatigm) and a ¢ the case. So, some useurrently using a sef of edges

latency functiond. (z), wherec.(x) is the cost of building o9 prefer switching to the s& — A + B:
the edge: for  users which the users will share, whilg(x)

is the delay suffered by each user on edgé x users are Ce Ce
sharing the edge. The goal of each user will be to minimi; <ne 17 lene) >2 (ne 1t le(ne + 1))'

the sum of his cost and his latency. If we assume that both thé ceh

cost and latency for each edge depend only on the numHBervever, if we replacenfﬁ with 7“;— on the LHS of the

of players using that edge, then the total cost felt by eaghove equation, then the gap only gets larger. This means
user on the edge i&.(z) = c.(x)/z + d.(x). These gamesthat: is not at equilibrium undeyf since it can benefit from
remain potential games [15, 4] (they are particular casssitching.




Now we use the fact that the new gagifehas a price of Second, our proofs do not really require us to GRT for
anarchy of5/2 [6]. So, the total cost iy’ of the behavior advertise(G), but rather we can start with any solutidn
of the non-receptive players at the end of Step three\ife would then converge to a pure Nash equilibrium whose
O(OPT’). Note now that the following hold: costis at mosO((1/a)logn) from cost(F). For example,

if we let F be the best Nash equilibrium, then since the

(@) The cost of the non-receptive players at the end of SigR-o of stability isO(logn), the expected cost of the final
thr_ee usmg_cost fun_cuonﬁ |s.at most twice thel_r cost equilibrium is withinO((1 /) log? n) of the optimal cost.
using functions:. (since addingl to the denominator

in going from f to 1 at best reduces the cost by a factgf | 554 Balancing Games

of 2). . . .
In this section we concentrate on load balancing games (see

(b) E(OPT’) = O((1/a) cost(OPT)). This is because [16]) defined as follows. There arejobs andm unrelated
one option forOPT’ is to use the same paths as imachines. Each player is associated with a job, so have

OPT, in which case: players. Every job canimpose a load on one of the machines,
_ so for every playey its set of feasible actions is to assign
(i) thel. - n terms are the same as@PT, and job j to some machine, i € {1,...,m}. Each jobj has

(ii) sincen, > nzf}; and as we argued in Theorem 3.@ssociated a cost ; for running on maching. Given an
we haveE[c./(1 + n%%)] = O (co/ (v - nPY)), assignment of jobs to machines, the Iogd of machisehe .
this means the expeéted sum of theterms in SUM of the costs of the jobs that are assigned to that machine,
i.e., Li(s) = ZjeBi(s) ¢i,; where B;(s) is the set of jobs
OPT’ isO( > nzp§~ce/(a-n2pt)>. assigned to maching i.e., B;(s) = {j : s; = i}. The
enP'>0 cost of a playerj is the load on the machine that playger

These imply that the expected cost undesf the non- selected, i.ecost;(s) = L, (s). For the social cost we use

receptive player® at the end of Step three satisfies: themakesparwhichiis the load on the most loaded machine,
i.e., cost(s) = max; L;(s). The price of stability in this
E[Cost(sged)] = O((1/a) cost(OPT)). games isl, since there is always a pure Nash equilibrium

which is also socially optimal [11].
We now argue that the expected cost in the original game First, we show a strong negative result: as long as there
for the receptive players at the end of step three is als two players (jobs) that are not re-assigned, the ratioeof
O((1/a) cost(OPT)). In particular, the key issue is thecost of the equilibrium produced to OPT can be unbounded.
latency term, since there could potentially be more nom addition, we show that this negative result holds even
receptive players on any given edge tha®RT. However, in the viral marketing model, and even if we restrict the
if on a given edge there are more receptive players than nadversary to choosing equilibrig?” that are reachable via
receptive players in™c?, then we lose at most a factor obetter-response dynamics from the initial stsit& (we call
two compared to the latency cost@PT; on the other hand such an adversaryreasonable adversa)y
if there are more non-receptive players than receptive,o
then we are fine again because we have bounded the
of the non-receptive players, so we can charge the cos :
the receptive players to the cost of the non-receptive piay or any setR of at mostn — 2 players, the cost of the final

which we already bounded. So, that the expected cost at 't .h eqqilibrium might be unbounQed With_ r.espec.t to the
end of step three satisfies: social optimum. (l.e., for any advertisement joint actisfi

and set of players?, |[R| < n — 2, there is an equilibrium
E[cost(s"* )] = O((1/a) cost(OPT)). s/ € U(s*,R) s. t. cost(s/) > 1 while OPT = ¢)
Moreover, there exist initial joint actions™ such that this
This together with Lemma 3.3 implies that the expect@dn occur via a reasonable adversary.

value of the potential functiof at the end of step three is a i . . .
most anO((1/a) log n) factor larger than the cost @P'T, jbroof. Consider the following load balancing garge Job

SR . T has cost on machinej and1 on any other machine. The
which implies the cost of any final equilibrium at the end of - ) . - L
X . social optimum assigns jopto machinej and has cost.
step four is at most that large, as desired.

In G, a joint action is a Nash equilibrium if and only if it
Remarks: Note that in all the variants of the cost sharingllocates to each machine a single job. Leearptymachine
game studied in this section, the cost of the final equililoriube a machine with no job assigned to it.

reached i0((1/a)logn) from the optimal cost while the Consider an initial joint actiors®™ which assigns an
price of stability is©(logn) as shown in [4]. This implies even job2k to machine2k — 1 and an odd jol2k — 1 to
that the difference in guarantee is only a fact®fl/«). machine2k. Note that this initial assignment is a Nash

nes . . .
f OREM4.1. Thereis aload balancing game with = n
erlated machines such that in the viral marketing model,



equilibrium and has codt Therefore, the ratio of the initial the jobs inR where in each pair one job is of type | and the
configurations®® cost and the social optimumig'e, which other of type IlI. (SinceR is strictly less than half the jobs,
is unbounded sinceis arbitrary. i.e.,,|R| <k — 1, we can doit, and there will be at least one

Let R be an arbitrary set af — 2 jobs and lets*? be the type | job and one type Il job remaining.) For each pair of
recommendation for players iR. Let j; andj,; be the two matched jobg; € R andj, ¢ R we set the action of job
players notink andi, = si"* andi, = si7* the machines on j, to be the opposite machine ¢f, i.e., s7* = 3 — 5%,
which they run ins™™*, respectively. Given our initial joint This implies that the pair's contribution on each machine is
action s we know thatj; # i, andjy # iy. Also, if identical. Therefore at™<? we have that the load on both
j1 = iy thenj, = 4; and vice versa. Hence, eithgr = i, machines is identical, and hence it is a Nash equilibrium.
andj, = i1 0rj; # i, andjs # i,. We will show that for our Since there is a pair of jobs that did not move from their
s for any s and anyR, even for a reasonable adversargction ins'™* the cost is at least, while the optimal cost is
the process can terminate in a final Nash equilibrism ke. m

which has a cost of at I_ea;SI . Aot . We can show that the result above is almost tight in the
Ifthere is a playek in R which s** assigns to a machine

s¢d £ [, then consider the following dynamics. Let all thgense that.there 1S alwaysaget of playea S'Z.e“‘/”??"z

: Lo . Such that in the viral marketing model the final equilibrium

jobs excepk reach any equilibriuma’ for them (say, using a . '
: . 2 “is always optimal.

best response dynamics). shthere is no empty machine,

since otherwise some jop # k can improve its cost by

moving to the empty machine. This implies tais a pure

Nash equilibrium of the gam@and therefore/ = s’. Since

the cost of jolk in s/ is 1, we have thatost(s/) = 1, and

we are done. Therefore, assume th#t assigns each job

. . . . ad __ -
j € Rtoits least load machine, i.e}" = j. _ Proof: Let 5% = OPT for someOPT. Letk be the ma-
We have two remaining cases to analyze. The first ca$6a with most players ia®, i.e.,k = arg max; | B;(s%)|

is whenj; # i, andjo, # i;. In this cases*? assigns joli; Let R = N \ By(s°?), and note that since at leasfm
to machine; and jobi, to machine,, and each machine haﬁ)layers are inBy,(s*4), then|R| < n — n/m. Note that
aload ofl + ¢, while machineg; andj, are empty. Jobg; .
andj, can then undergo a better-response process and s
the following equilibrium: jobyj; selects maching, and job
j2 selects maching, having a cost ot for each. Since this

is an equilibrium we also reached which has a cost of. cost(OPT). Since the best response dynamics does not in-

In the second caspy = i andj> = ;. In this case after .o 56 the cost and eventually converge to a pure Nash equi-

5% each machine has a single job, and hence we are afighum [11], we havecost(s’) = cost(OPT), as desired.
equilibrium which has a costdf = .

For the case of two machines and an arbitrary number of
jobs we can derive the following result.

THEOREMA4.3. For any load balancing game there exists
a strategy for the viral model with a se® of at most
(1 — 1/m)n players such that any final equilibriusf has
optimal cost.

iven thats®? is performed byR, any jobj € By, (s*?) has a
eg‘égf response whose cost is at mastt,;(OPT), since in
s™ed only jobs in By, (s*?) would select maching. There-
fore at the end of step three we have thatt(s™*?) =

5 Consensus Games, Cut Games, and Party Affiliation
THEOREMA4.2. There is a load balancing game with two  Games

unrelated machines and jobs such that in the viral model, |, this section we consider three related classes of games,
for any setk of at mostn/2 — 1 players, the cost of thejayed by users who are viewed as vertices in a connected,
final Nash equilibrium might be unbounded with respect {g,qirected simple grapi = (N, E) with n vertices, where

the social optimum. N = {1,..,n}. We will first describe the most general

Proof: Assume that is even, i.e.n = 2k. We havek jobs game ofparty affiliation and then discuss the special cases

of type I, defined such as their cost on machirise and on Of consensus gamesidcut games

machine2 is 1; we also have: jobs of type Il, defined such ~ In party affiliation gameq7] the set of edges® is

as their cost on machirieis 1 and on machin@ is . In si»¢  partitioned into positive and negative edges, denotef? by

all the jobs of type | are on machizeand all the jobs of type and N E' respectively. Each playerhas two actions or

Il are on machind, which is a Nash equilibrium that has & i-e..S; = {r,b}. A player has cost 1 for each incident

cost ofk (compared t@PT which has a cost ofe). positive edge on which he disagrees with his neighbor,
Suppose thak includesk; jobs of type | and:» jobs of and cost 1 for each negative edge on which he agrees

type 2, and advertises?? for them. Consider the following With his neighbor, i.e.costi(s) = > /cppLsizsy) +

Nash equilibriums™e¢ for the players not inR. We select >_; jjenr Lisi=s;)- The overall social cost is the sum of

k4 jobs from type Il and:; jobs of type | and pair them withthe costs of all the users, plus i.e., cost(s) = 1 +



Y ieN cost;(s).2 It is straight forward to show an exactProof: For the upper bound, the advertising strategy is
potential function [15] for the party affiliation game, silpp simply to tell all nodes to become color red, i.8%! =
let the potential beP(s) = (cost(s) — 1)/2. Also, in (r,...,r). By Hoeffding bounds, each node with degree at
any party affiliation game the social optimum is a Nadhastlogn/(a — 1/2)? has more than half of its neighbors in
equilibrium, thus the Price of Stability is set R with probability at leastt — 1/n2. Therefore, by the
Consensus gamese a special case of party affiliatiorunion bound all nodes have this property with probability at
games where all the edges @ are positive edges, i.e.leastl — 1/n, and so with high probability at the end of step
NE = (). The two social optimal solutions in a consensubree all nodes are red, i.es?*? = (r,...,r), which is
game are “all blue” and “all red”, both of which are also aptimal.
Nash equilibrium. On the other hand, for an even number For the lower bound, lety = 1/2 — « and consider
of players, letG be the cliqueK,, with a perfect matching a graph consisting of two cliques of siz¢’2, where each
removed, e.g.F = {(¢,5) : j #4} — {(2¢,2¢ — 1) : n/2 > vertex hasyn/8 neighbors in the other clique. Suppose
i > 1}. Consider the joint action in which even players initially we have one clique red and the other clique blue.
play » and odd players play, i.e.,sor, = r andssr1 = b.  Sincey is a positive constant, for sufficiently largeve have
This is a Nash equilibrium, since each player has exactly htlat with high probability each node has at mo$ya—~/2
its neighbors the same color and exactly half of the oppoditaction of its neighbors in sef. However, since each node
color. This results in a social cost@{n?) and thus the Price initially has only ay/4 fraction of its neighbors of the other
of Anarchy for consensus games1$n?). color, this will not be sufficient to cause any of the nodes not
Cut gamegsee [7]) are a special case of party affiligin S to change color in step three. Therefore, in step three,
tion games where all the edgesGhare negative edges, i.e.all nodes inS will simply revert to their original color and
PE = (). Thus cut games have the opposite objective frone again havé)(n?) badly-colored edges.m
consensus games. As mentioned above, in a cut game the . . .
optimal solution is a Nash equilibrium and so the Price of Th?_ key to the upper bound above is that with high
Stability is 1. However, the problem dindingan (approx- probability the sefR satisfies the property that every vertex

imately) optimal solution is the Min-UnCut problem [1] for"Ot in B hgs more than lrllalf its ne]ifglhbprs . For cut i
which the best efficient approximation algorithm known hgames and more generally party-affiliation games, we wi

approximation ratia)(y/log n). As with consensus games,neeOI a b_'t more (in particular becau@PT no I(_)nger
the Price of Anarchy for cut-games can be as baft@g). necessarily has zero cost for every player). Specificatly le

For instance, ifG is the complete bipartite graph,, ».,, 2, us say that a sef is ag-dominating set if every vertex not

then coloring half the nodes on the left and half the nodlds> has more than &/2 + 3 fraction of its neighbors i’ -
on the right blue, and coloring half the nodes on the left aht?effd'”g bounds_lmpl_y that in th.e. advertising model \.N'th
half the nodes on the right red, is a Nash equilibrium wiff} ~ 1/2 + 243, with high probability the set of receptive
costQ(n?) (and yet the optimal solution has cost 1 since tHE?YE'S 1S aﬁ-(.jomlnatmg set, so long as all nodes have
graph is bipartite). egreev(logn):

We first show that if all nodes have degreélogn),

then in the advertising model all these games have a shlaFﬂv'MA 5.1. For any party affiliation game in which each
threshold aiv = 1/2: any constantr > 1/2 is sufficient node has degree(logn), for any constant: > 1/2 + 25

to produce an optimal or near-optimal solution, and yeteghe ':jh pr_obf;blhty 1t n tc;](l) (tjhe ?_e'F of recgzpltlve players is a
exist families of graphs for which any constamt< 1/2 *~~ ominating set in the advertising model.
yields a solution of cost as nearly bad as possible (a factor

Q(n?) worse than optimal). We begin with the simpler caset We no;/v SQ.?Wt.the following property gf-dominating
of consensus games. sets in party affiliation games.

THEOREM5.1. For consensus games in which each nodeEMMA 5.2. For party-affiliation games, if the sek fol-

has degreev(logn) there is a sharp threshold at = 1/2 lowing the advertising strategy is @dominating set, then

in the advertising model: for any constamt> 1/2 there we can produce a solution within an(1/3) factor of opti-

exists a strategy such that with high probability the finahal.

equilibrium is the optimal solution (ratio of 1), and yet

for any constanta < 1/2 there exist graphs such thatProof: We argue by considering two kinds of nodes: those

for any advertising strategy with high probability the finaWith less than & fraction of their incident edges incurring

equilibrium will be a factor2(n?) worse than optimal. a cost (of one) iINOPT (call those “low-cost” nodes), and
those with more than @& fraction of their incident edges

T ZThe “+1" is just to ensure the cost is nonzero so that all ratios aie welNCUITing a cost iNOP'T (call those “high-cost” nodes). The

defined. advertising strategy is to tell nodes to behave according to



OPT, i.e., s = OPT.2 SinceR is a-dominating set, With probability 1/2 — /3 the vertexv is notin.S’. In
each low-cost node will change in step three to its color arder forv not to be inS” it needs at leastd(1/2 + ()]
OPT (because that color minimizes its cost with a majorityeighbors inS’. Consider the following event: the firgt
of its neighbors). For the high-cost nodes, we may nogighbors of) are inS’ (probability(1/2+3)?) and from the
produce the desired behavior; however, no matter how tteenainingd— 3 neighbors ob at least (d—3)(1/2+3) ] are
high-cost nodes behave, they cannot incur a cost thains’ (this has probability at least/2 since this is less than or
more than al /3 factor worse than their cost IOPT (by equal to the median of the distribution). If this event osgur
definition of “high cost”). Therefore, the total cost by theinces < 1/6, thenv has atleast(d, —3)(1/2+ )] +3 =
end of step three is at mo&t+ 1/3)OPT. Finally, the cost |d,(1/2 + 3) + 3(1/2 — B)] > |d,(1/2 + 3) + 1| >
can only improve via the best-response process in Step folif,,(1/2 + /)] neighbors inS’ and therefore it is not iry”.

(] Sincew is not in S’ nor S” it is not in R. The probability

Fora > 1/2, by settingd = (a — 1/2)/2, Lemma 5.1 of the event is at leadt/2(1/2 — 3)(1/2 + ) > 1/32 for

and Lemma 5.2 imply that the cost of the final equilibrium t < 1f/6‘ So, t?efeﬁpecteidtrs:zte@‘ls at n:osl(il/?a)n and
within an O(1) factor of optimal. Forxw < 1/2, the Q(n?) erefore a set ot at most that size must exiat.

bound from Theorem 5.1 still applies; thus exhibiting is a For the case of consensus games we can show improved
sharp threshold at = 1/2 in the advertising model. bounds (since we only need a strict majority for each node).
I _ . Call a setS astrict dominating seif for every nodev notin S
THEOREMS.2. For party-affiliation games in which each,[he strict majority of its neighbors are & i.e. (d”QH]- For

no_de has degree(logn), for any qonstanu > 1/2 there consensus games it is sufficient to have a strict dominating
e?('StS a strqt_egy for _the advgru;mg model such that W'élgtR to guarantee an optimal solution, since then we are
high probability the final equilibrium has cog?(OPT). guaranteed that all the players will switch to the color @& th

Mqr_eo_ver, for any constank < 1/2 the_rg exist party'_majority of their neighbors. The following lemma derives
affiliation games such that for any advertising stra’[egywwq)oundS for strict dominating sets

high probability the final equilibrium will be a factdp(n?)
worse than optimal. LEMMA 5.4. For any graphG in which each node has odd
degree, there is a strict dominating Jeof size at most /2,
and for general degrees, there is a strict dominatingi3eif
size at mos(23/27)n.

Unfortunately, in the low-degree case, no value 1 is
sufficient to achieve a cost that is even within(a) factor
of OPT, because the gragh could consist of a collection

of constant-sized components, and with high probabilig,of: First, consider the case that each node has odd degree.
a constant fraction of these components would have A8nsider an arbitrary Nash equilibrium of teet gamein

member inR. On the other hand, note that if the set ghe given graptt, i.e., all the edges are negative edges, and
receptive playersi constitutes aj-dominating set, then by g p pe the minority color class in this equilibrium (hence,

Lemma 5.2 we produce a solution within @r{1/0) factor ¢ sjze ofR is at mostn/2). Since it is a Nash equilibrium
of optimal. Thisimmediately translates to aresultinth@Vi ¢ iha oyt game, each vertex not inhas a majority of its

marketing model, where we can select the set of receptiygqgnpors in the sek (a strict majority since all degrees are
players. The following lemma constructgadominating set odd).

in an arbitrary graph. For the case of general degrees we use a ran-

LEMMA 5.3. For any graphG and3 < 1/6, there is a3- domized argument similar _ to Lemma 5.3. Let/ _
dominating sef of size at most31,/32)n. _be a ra_ndom set_ _of vertices, where each vertex is
in S’ with probability 2/3, and let S = {v :
Proof: Let S’ be a random set of vertices, where does not have a strict majority of neighborsify. ~ We
each vertex in S’ with probability 1/2 + 3, and will thenletR = S’ U S”. SetR by construction has the
let S” = {v : wdoesnothave atleagi,(1/2 + property that all vertices not i have a strict majority of
B)] neighbors inS’}, whered, is the degree of. Consider their neighbors ink so we simply have to argue about size.
R = S8"US". The setR is by construction g-dominating In particular, any vertex has at least a probability/3 of
set, so we simply have to argue about size. In particular, wet being chosen 5’ and probability at least/9 having
show that any vertex has some constant probability of no& strict majority of its neighbors irf’ (the worst case is
being chosen iy’ U S”. whenwv has degree). So, the expected size &f is at most
(23/27)n and therefore a set of at most that size must exist.

3In general, this advertising strategy can be computatiprizrd to [ |

compute. For cut-games, however, at the loss of an &{rglog n) factor . .
we can instead use the Min-UnCut approximation algorithrflhfand the We can now deduce the following theorem for the viral

rest of the argument proceeds in the same way. marketing model.



THEOREMS.3. In the viral marketing model: (1) For any [7] G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos.o6-

party affiliation game there is a sét of (31/32)n players vergence and approximation in potential gamesProc. 23rd
that guarantees a solution within an(1) factor of optimal. STACS2006. . .
(2) For consensus games, there is a Bbf at mostn/2 [8] J. R. Cc_)rrea, A._S. Schulz, and N. E. SFler-Moses. _Selflsh
players if all degrees are odd, or a sBtof at most(23/27)n routing in capacitated networkdMathematics of Operations

. Research29(4):236 — 259, 2004.
players for general degrees, that guarantees an Optlm%] A. Czumaj and B. Voecking. Tight bounds for worst-case

solution. equilibria. InProc. 13th ACM-SIAM SOD&R002.

[10] E. D. Demaine, M.T. Hajiaghayi, H. Mahini, and M. Zadi-
moghaddam. The price of anarchy in network creation

In this paper we consider the question of to what extent can games. IrProc. 17th SODA2006.

a “public advertising campaign” cause behavior to switdhl] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence

from a bad equilibrium to a good one even if only a fraction  time to Nash equilibrium in load balancingACM Transac-

of people actually follow the given advice, and do so onl)i tions on Algorithms3(3), 2007. o

temporarily. Unlike the notion of price of stability we do-2] A-Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriand

not assume everyone takes the advice, and unlike the notion ibSDtger;Ig%ré On & network creation game. Hroc. 22nd

of vf';llue ‘?f aItrw;m we assume everyone in the end W[H3] D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfisbplit
act in their own interest. We show that for some natural * apje flows. Theoretical Computer Scienc@48(2):226 — 239,

games (cost-sharing), it is enough to induce a small fractio  2qos5.
to behave well in order to reach a good equilibrium, whereps)] E. Koutsoupias and C. H. Papadimitriou. Worst-caselisgu
for others (load balancing) one needs to reach nearly the ria. InProc. 16th STACSages 404-413, 1999.
entire population, and yet others (party affiliation) have [45] D. Monderer and L.S. Shapley. Potential gam@ames and
threshold property. Thus, we provide an interesting metric  Economic Behaviorl4:124-143, 1996. o
along which games can differ: how much “effort” (e.g.[16] N. le_an,_T. Roughgarden, E.Tardos, and V. Vaziranioesl.
advertising dollars) a central authority might need to incu A'go”th';:'c (:’jame T:eorycadmb”dge' Zt?og; fish routing?
in order to induce good behavior in them. [17] T. Roughgarden and E. Tardos. How bad is selfish routing?
. i . . Journal of the ACM49(2):236 — 259, 2002.

While we have described our results using advice t & - :

. fthe alobal . behavior. in all his ] Y. Sharma and D. P. Williamson. Stackelberg threshatds
consists of t e_g oba thlmum ehavior, _'n a, cases ths ¢ network routing games or the value of altruism. ACM
be replaced \{wth adwsnj_g the best equmprlum at an extra  conference on Electronic Commer@07.
cost of the price of stability. In a sense (viewed in reverse)
this can be thought of as asking *how stable is the prige Additional Proofs
of stability”: starting from a good equilibrium, can a smakIN rove here a useful property of a binomial random
shock to the system produce a bad state from which natural. P property

. variable.
2
dynamics could not recover Lemma 3.2 Let X be a binomial random variable dis-

tributed Bi(n, p). ThenEx [X—H] 0 (—) .

6 Conclusions
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