6
Approximation Stability and Proxy Objectives

Avrim Blum

Toyota Technological Institute at Chicago
avrim@ttic.edu

Abstract

This chapter! introduces approzimation stability, an input condition motivated by
the common practice of using the score of a solution under an easy-to-measure
objective function as proxy for true solution quality, in problems where the true
goal is to find a solution that “looks like” an unknown target solution. An instance
is approximation-stable if all solutions with near-optimal values for the proxy ob-
jective are close in solution space to the desired target solution, and it turns out
that such instances have a number of surprising algorithmic properties. This chap-
ter describes the approximation-stability notion, presents a variety of algorithmic
guarantees under this condition, and discusses implications for the use of approxi-
mation ratio as a yardstick for problems of solution discovery.

6.1 Introduction and Motivation

Many algorithmic problems, while posed as a task of optimizing a measurable ob-
jective function, are motivated by an underlying goal of approximating a desired
(target) solution. An example would be clustering a dataset of points that repre-
sent images of people by optimizing a k-means or k-median objective, when the true
goal is to cluster the images based on who is in them.? Another example would be
searching for a Nash or approximate-Nash equilibrium in a game with the hope
that the solution found will approximately predict how people will play. Implicit
in formulations such as these is a hope that a solution that optimizes or nearly-
optimizes the measurable prozy objective (the k-means or k-median score in the
case of clustering, or the maximum incentive to deviate in the case of equilibria)
will indeed be close to the solution one is hoping to recover.
Approximation-stability formalizes and makes explicit the implicit hoped-for con-

1 Chapter 6 in “Beyond the Worst-Case Analysis of Algorithms”, T. Roughgarden, editor.
2 For a clustering C1, ..., Cy of a point set S, its k-median score is Z;il mine; 3 . d(z, ¢;). Its
- k2

k-means score is 3, mine, >, 0. d(z, ci)?.
= i
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nection above. An instance is approximation-stable if all near-optimal solutions to
the proxy objective are indeed close to the desired target solution (see below for a
formal definition with parameters). An instance is not approximation-stable if being
near-optimal for the proxy objective is not a sufficient condition for being close to
the target. Any given instance might or might not be approximation-stable. If it is,
this motivates use of the proxy objective. If it is not, then it means the motivation
for using the proxy objective, at least by itself without additional conditions, is
somewhat suspect and perhaps should be re-examined.

The results surveyed in this chapter show the following surprising type of state-
ment for a variety of well-studied objectives: instances satisfying approximation
stability at levels that would seem too weak to be helpful, can in fact be solved to
high accuracy using structural properties inherent in the stability condition itself.
As an example, suppose a clustering instance is stable with respect to the k-median
objective in the sense that every clustering whose k-median score is within a factor
1.1 of optimal is e-close to the target solution. For instance, in the case of clustering
images by who is in them, this would mean that every 1.1-approximation to the
k-median score correctly clusters a 1 — € fraction of the images. (In Section 6.2
we will define this as (1.1, €)-approximation stability to the k-median objective).
At first glance, this condition seems too weak to be useful since we do not have
any efficient algorithms that achieve a 1.1-approximation to the k-median score.
The best approximation guarantee known for k-median is roughly a factor of 2.7
(Li and Svensson, 2016), and in fact achieving a 1.1-approximation is known to be
NP-hard (Guha and Khuller, 1999; Jain et al., 2002). Nonetheless, as we will see
below, we can give a natural, efficient algorithm guaranteed to find a clustering that
is O(e€)-close to the target in any instance satisfying this condition. Curiously, the
k-median problem remains NP-hard to approximate even on such stable instances,
so the algorithm approximates the solution without necessarily approximating the
objective (Balcan et al., 2009b, 2013).3

Interesting parameter ranges. We will define an instance to be (¢, €) ap-
proximation stable for a given objective function if every c-approximation to the
objective is e-close to the target solution. Notice that if ¢ is greater than or equal
to the best known approximation factor for the objective, then we immediately
have an efficient algorithm to find solutions that are e-close to the target for such
instances. So, such large values of ¢ are not so interesting. Instead, we will be inter-
ested in the case that ¢ is much smaller than the best known approximation factor
for the given objective. We will then be asking the question: even though we do
not have a c-approximation to the given objective, can we do as well as if we had a
generic such approximation algorithm, with respect to the goal of finding a solution
that is close to the desired target.

3 If one also makes the assumption that cluster sizes are roughly balanced, then this hardness goes

away, and in fact one can give efficient algorithms to approximate k-median to the desired 1.1
factor, and thereby get e-close to the target solution. See Section 6.3.



6 A. Blum
6.2 Definitions and Discussion

We now formally present the main property studied in this chapter, namely that of
(¢, €)-approximation stability.

First, consider some optimization problem, such as MAX-SAT or k-median clus-
tering. An optimization problem is defined by an objective function ®, such as the
number of clauses satisfied for the MAX-SAT problem or the k-median cost for the
k-median problem. For any given problem instance, there is some space of possible
solutions to that instance, and the objective function ® assigns a score to each one.
E.g., for the MAX-SAT problem, an instance would be a formula on n variables, the
solution space would be the set {0,1}" of all possible Boolean assignments to the
variables, and the objective value for a proposed solution is the number of clauses
satisfied. For the k-median problem, an instance would be a set S of n points in some
metric space M = (X, d), the solution space would be the set of all k-clusterings
{C1,...,C} of S, and the objective value for a proposed solution would be the
k-median score Zle mingex Y ,ec, d(7,¢;). In addition to the objective score,
we are also interested in the distance between solutions in the solution space. So
we will assume we are given some natural distance measure dist(-,-) over possible
solutions, such as normalized Hamming distance for the case of truth assignments
to variables (normalized to the range [0, 1]), or the fraction of points that would
have to be reassigned in one clustering in order to make it match another cluster-
ing, in the case of clustering problems. Lastly, we assume there is some unknown
target solution we are hoping to get close to, such as a correct clustering of images
based on who is in them, or in the case of MAX-SAT that there is some truth
assignment that corresponds to “correct” behavior. We then say that an instance
satisfies approximation-stability if all near-optimal solutions according to the given
objective are close to the target solution according to the given distance measure
on solutions. Formally,

Definition 6.1 Consider a problem defined by an objective function ®, and
with distance function dist on its solution space. An instance I satisfies (c,e€)-
approzimation stability with respect to an (unknown) target solution yr if all so-
lutions y of I having ®(I,y) within a factor ¢ of the optimal objective value for I
satisfy dist(y,yr) < e.

For example, an instance of the k-median problem satisfies (¢, €)-approximation
stability if all clusterings that have k-median score at most ¢ times that of the
optimal k-median clustering agree with the target clustering on at least a 1 — ¢
fraction of points.

It is often helpful to think of approximation-stability in its contrapositive form:
any solution that is e-far from the target must be expensive, costing more that
¢ times the minimum objective cost. A schematic illustration of approximation-
stability is given in Figure 6.1.
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Figure 6.1 A schematic view of approximation stability. Note that the target yr need not
have the optimum objective value, but all near-optimal solutions must be close to yr.

Removing the target solution. One can also define a nearly identical notion
of approximation stability without reference to any target solution, by just asking
that all near-optimal solutions be close to each other. Specifically, if all near-optimal
solutions are within distance ¢ of a target solution then they are all within distance
2¢ of each other by the triangle inequality, and if all near-optimal solutions are
within distance € of each other and the target is also a near-optimal solution, then
clearly they are within distance € of the target.

Target versus optimal. Approximation-stability does not require that the tar-
get solution be the same as the solution with optimal objective value (see Figure
6.1). For example, for the problem of clustering, we will typically refer to the target
clustering as Cr and the optimal clustering for the objective as C*. However, it can
be helpful to think of the two as equal on first reading.

Determining if an instance is stable. Because approximation-stability refers
to distance to an unknown target, there is no way for an algorithm to tell if an
instance is indeed approximation-stable. However, if one has an oracle that will
report if a solution is “good enough”, and if one has an algorithm that finds good
solutions on stable instances, then one can just run the algorithm: if the oracle
reports success, then one has found a good solution (in which case one probably
doesn’t care if the instance was actually stable); if it reports failure, then one knows
the instance wasn’t stable.

Algorithmic structure. For a given stability notion, it is natural to ask what
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kinds of algorithms that notion motivates. In the case of clustering, we will see that
approximation-stability motivates “ball growing” approaches, where one increases
a threshold 7, connecting together all pairs of distance < 7, and then forms cluster
cores based on dense components in this graph. One can then make a second pass
to assign non-core points to clusters based on their distance to the cluster cores
from the first pass. In the case of Nash equilibria, approximation-stability does not
seem to necessarily motivate new algorithms, but rather leads to improved bounds
for existing algorithms that aim to find solutions of small support.

Connection to perturbation stability. Perturbation stability, discussed in
Chapter 5, asks that modifying the instance (e.g., changing the distances between
datapoints) by up to a factor of ¢ should not change the optimal solution to the given
objective (e.g., should not change how points are clustered in the optimal k-median
clustering). One can also define a relaxed version of perturbation stability that
allows the optimal solution to change by up to an € fraction of points (Balcan and
Liang, 2016). This relaxed version has an interesting connection to approximation
stability. In particular, for many problems of interest, if one modifies an instance
by changing distances by up to a factor of ¢, then the cost of any given solution
changes by at most some function of ¢ (e.g., for k-median clustering, the cost of any
given solution would change by at most a factor of ¢ and for k-means clustering,
the cost of any given solution would change by at most a factor of ¢2). This implies
that an optimal solution to a perturbed instance is also a near-optimal solution
to the original instance. Thus, the perturbation-stability requirement that optimal
solutions to perturbed instances be close to the optimal solution to the original
instance is a less stringent version of the approximation-stability requirement that
all approximately-optimal solutions to the original instance be close to the optimal
solution to the original instance (if we associate the optimal solution with the
unknown target). On the other hand, while perturbation-stability is a less stringent
condition than approximation-stability for the same c, typically one can only achieve
positive results for perturbation-stability for factors ¢ that are close to or greater
than the best approximation ratios possible, whereas for approximation-stability
one aims to get positive results for much smaller parameter values, ideally constants
arbitrarily close to 1. So the types of results one can prove about the two stability
notions are generally incomparable.

Connection to separability notion of Ostrovsky et al. (2012). The sep-
arability notion of Ostrovsky et al. (2012), which is specifically designed for clus-
tering, asks that the optimal objective value for k clusters should be substantially
lower (by a sufficiently large constant factor) than the optimal objective value for
k — 1 clusters. E.g., the optimal k-means cost should be substantially less than the
optimal (k—1)-means cost. Ostrovsky et al. (2012) then show that under this condi-
tion, a Lloyd’s-style algorithm will succeed in finding a near-optimal solution. They
also show that if a clustering instance satisfies this property for a sufficiently large
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constant factor, then it also has the property that all near-optimal k-means clus-
terings are close together, namely approximation-stability. Therefore, algorithms
designed for approximation stability (such as given in this chapter) will also suc-
ceed under their separability condition. In the other direction, the Ostrovsky et al.
(2012) separation condition for a small separation constant is a weaker condition
than approximation-stability in the case that all target clusters are large. That is
because approximation-stability asks that all clusterings that are e-far from the tar-
get be more expensive than optimal by at least a factor of ¢, whereas this condition
only asks that clusterings having at most k& — 1 clusters (which are e-far from the
target if all target clusters have at least en points) be expensive.

Proxy objectives. An ideal proxy objective would both (a) be something one
has reason to believe is optimized by the target and not by any solution far from
the target, and (b) be efficiently optimizable. If (b) does not hold but either one
has a good approximation algorithm or one has an algorithm under approximation
stability, then it would be enough to satisfy a somewhat stronger version of (a) in
which solutions far from the target are not even near-optimal. Thus, algorithms that
work under approximation stability can help broaden the set of proxy objectives
one might reasonably consider for a given problem.

More broadly, a general approach to finding a desired target solution is to identify
properties that one believes the target solution should have, and then use them to
identify the target or a close approximation to it. In the context of clustering, Balcan
et al. (2008) and Daniely et al. (2012) even more broadly consider properties that
are not (even in principle) sufficient to uniquely identify the target solution, but do
allow for a small set of candidate solutions, that one could then present to a user
for further refinement using other criteria. An example of such a property is that
most data points x should be closer on average to points in their own target cluster
than to points in any other target cluster, by some additive (Balcan et al., 2008)
or multiplicative (Daniely et al., 2012) gap . Ackerman and Ben-David (2009)
consider an intriguing property called “center perturbation clusterability” that is a
bit like an inverse of approximation-stability. They consider center-based clusterings
(a clustering is defined by k centers, with each datapoint assigned to its nearest
center) and ask that all clusterings whose centers are close to the optimal centers
should have a cost within a small factor of the optimal cost. One could also hope to
learn relevant properties from past data, using techniques such as in Chapter 29.

6.3 The k-Median Problem

The k-median problem is a particularly clean objective for studying approximation-
stability, and many of the ideas used for it can be extended to other clustering
formulations such as k-means and min-sum clustering. So, we focus on it here.
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We now show how one can design an efficient clustering algorithm with the guar-
antee that if an instance is (1.1, €)-approximation stable for the k-median objective,
it will find a solution that is O(e)-close to the target, or even e-close to the target
if all target clusters are large compared to en. That is, it performs nearly as well
(in terms of distance to the target) as would be guaranteed by a generic 1.1-factor
approximation to the k-median objective, even though approximating k-median to
such a level is NP-hard. More generally, if the instance is (1 4 «, ¢)-stable then the
algorithm will find a solution that is O(e/a)-close to the target, or even e-close to
the target if all target clusters are large compared to en/«. Note that 1/e, 1/«
and k need not be constants (and in fact, one should not think of k£ as a constant
since we do not want to view an algorithm that “tries all possible k-tuples of cen-
ters” as efficient). For example, we might have Cy consist of n%! clusters of size
n%9 ¢ =1/n% and a = 1/n%" (this would correspond to the case of large target
clusters in Theorem 6.2).

We begin with a formal definition of the k-median problem, state the main results,
and then give algorithms and proofs.

6.3.1 Definitions

Let M = (X,d) be a metric space with point set X and distance function d. A
k-clustering of a point set S C X is a partition C of S into k clusters {C1,...,Ck}.
The k-median cost of a clustering is the total distance of all points to the best
“center” of their clustering. That is,

Prmedian(C) = D_ min > d(x,ci). (6.1)

As mentioned earlier, we define the distance dist(C,C’) between two clusterings
of the same point set S as the fraction of points that would need to be reassigned
in one of the clusterings to make it equal to the other (up to reindexing of the
clusters, since the names of the clusters do not matter). Formally, the distance

between C = {C1,...,Cx} and C' = {C1,...,C},} is:

k
. 1
dist(C,C") = min ~ 3 1 |C\ Cyy, (6.2)
i=1
where the minimum is taken over all bijections o : {1,...,k} — {1,...,k}. This

distance is a metric on clusterings (see Exercise 6.1).

We say that two clusterings C and C’ are e-close if dist(C,C’") < e. Note that if
C and C' are e-close and all clusters C; have size at least 2en, then the bijection o
minimizing %Zle |Ci \ C(;‘(i)‘ has the property that for all 7, |C; N C;(i)| > 1c.
This implies for instance that such ¢ is unique, and we can say that C and C’ agree
onxifrxeC;n C’c’,(i) for some ¢, and C and C’ disagree on x otherwise.
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6.3.2 Some Interesting Results

We now present some interesting results known about k-median clustering under
approximation stability. We will then go into more detail into the algorithm and
proof for one of them.

Theorem 6.2 k-Median, Large Clusters Case (Balcan et al., 2013): There
is an efficient algorithm that will produce a clustering that is e-close to the target
clustering Cp whenever the instance satisfies (1 + a, €)-approzimation-stability for
the k-median objective and each cluster in Ct has size at least (4 + 15/a)en + 2.

The proof of Theorem 6.2 by Balcan et al. (2013) focuses on the distance of the
clustering produced to the target Cr, though Schalekamp et al. (2010) point out that
under the assumptions of the theorem, the algorithm additionally achieves a good k-
median approximation as well. So, in this case, the k-median approximation problem
itself has become easier under approximation stability. However, interestingly, once
we allow small clusters, finding an approximation to the objective becomes as hard
as in the general case, and yet we can still find a solution that is close to the target
clustering.

Theorem 6.3 k-Median: General Case (Balcan et al., 2013): There is an
efficient algorithm that will produce a clustering that is O(e+¢/a)-close to the target
clustering Cp whenever the instance satisfies (1 + «, €)-approzimation-stability for
the k-median objective.

Theorem 6.4 Hardness of Approximation (Balcan et al., 2013): For k-
median, k-means, and min-sum objectives, for any ¢ > 1, the problem of finding
a c-approximation can be reduced in polynomial time to the problem of finding a
c-approxzimation under (c, €)-approzimation-stability. Therefore, a polynomial-time
algorithm for finding a c-approximation under (¢, €)-approzimation stability implies
a polynomial-time algorithm for finding a c-approximation in general.

As noted above, @ and € may be sub-constant. However, in the case that 1/a =
O(1), Awasthi et al. (2010b) give an improvement to Theorem 6.2, needing a mini-
mum cluster size of only en to produce a solution that is e-close to the target. Their
result also holds under the separability notion of Ostrovsky et al. (2012) at the
1+ « separation level, and further was used as a building block by Li and Svensson
(2016) in the current best k-median approximation. So it is interesting that results

4 Li and Svensson (2016) give a bi-criteria algorithm that for some constant co finds a k-clustering Cj,
whose k-median cost is not too much greater than the cost of the optimal & — ¢¢ clustering C;;_CO.
To convert this to a true approximation, one then considers two cases. Case (a) is that C;—co is not
too much more expensive than the optimal k-clustering C};, in which case the solution Ci found is
itself a good approximation to Cj. Case (b) is that there is a large gap between the cost of CZ—CO
and the cost of C;;. But in that case, running the algorithm of Awasthi et al. (2010b) on values
k,k—1,k—2,....,k — co + 1 is guaranteed to produce at least one low-cost k’-clustering for k¥’ < k.
So, running both procedures guarantees a good approximation.
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based on non-worst-case stability notions can also have application to worst-case
approximation bounds.

6.3.3 Algorithms and Proofs

We now present the algorithm and main ideas for the proof of Theorem 6.2.

First, a small amount of notation. Given a clustering instance specified by a
metric space M = (X,d) and a set of points S C X, fix an optimal k-median
clustering C* = {CY,...,C;}, and let ¢} be the center point (a.k.a. “median”) for
C}. Note that C* may not be exactly the same as the target Cp. For x € S, define

w(x) = mind(z, c})

to be the contribution of z to the k-median objective in C* (i.e., 2’s “weight”). Simi-
larly, let wo () be z’s distance to its second-closest center point among {c}, 3, ..., i}
Also, let OPT denote the k-median cost of C* and define

n

1 OPT
Wapg = - Zw(as) = .

n
i=1

That is, wqy, is the average weight of the points. Finally, let ¢* = dist(Cy,C*). By
the approximation stability assumption, ¢* < e. (The reader may wish to think of
€* =0 and C* = Cr on first read.)

The way that approximation-stability will be used is via the following key lemma,
which gives us two important properties of approximation-stable instances.

Lemma 6.5 If the instance (M, S) is (1 + «, €)-approzimation stable for the k-
median objective, then

a. If each cluster in Cr has size at least 2en, then less than (e — €*)n points x € S
QWay

on which Cr and C* agree have wy(x) — w(x) < —22.

b. For any t > 0, at most t(en/ca) points x € S have w(x) >

HWavg
te
Proof To prove Property (a), assume to the contrary. Then one could take C*
and move (¢ — ¢*)n points  on which Cr and C* agree to their second-closest
clusters, increasing the objective by at most aOPT'. Moreover, this new clustering
C' = {C1,...,C}} has distance at least ¢ from Cp, because we begin at distance
€* from Cr and each move increases this distance by 711 (here we use the fact that
because each cluster in Cr has size at least 2en, the optimal bijection between Crp
and C’ remains the same as the optimal bijection between Cr and C*). Hence we have
a clustering that is not e-close to Cr with cost only (1 + a)OPT, a contradiction.
Property (b) simply follows from the definition of the average weight wgyg, and
Markov’s inequality. O



Approzimation Stability and Proxy Objectives 13

Note: one can also prove that a slightly weaker version of Property (a) of Lemma
6.5 holds in the case that Cr may have small clusters. The small clusters case is
trickier because reassigning points need not always increase the distance between
the clusterings (e.g., think of just swapping all points in two clusters). So, the
argument is more involved. See Section 6.3.4.

Let us now use Lemma 6.5 to define the notion of a critical distance and of good
and bad points. Specifically,

Definition 6.6 Define the critical distance d.,;; = mgz“"; note that this is 1/5
the value in property (a) of Lemma 6.5. Define point € S to be good if both
w(x) < depit and wa(z) — w(x) > 5derit, else define z to be bad. Let X; C CF be
the good points in the optimal cluster C, and let B = S\ (UX;) be the bad points.

We now show that if an instance is approximation-stable, there cannot be too
many bad points:

Proposition 6.7 If the instance (M,S) is (1 + «, €)-approximation-stable for
the k-median objective and each cluster in Cr has size at least 2en, then |B| <
(1+5/a)en.

Proof By Lemma 6.5(a), the number of points on which C* and Cr agree where
wa(x) —w(x) < 5derit is at most (e — €")n, and there can be at most €*n additional
such points where C* and Cp disagree. Setting ¢t = 5 in Lemma 6.5(b) bounds the
number of points that have w(z) > derip by (5e/a)n. O

Let us now see one way we can use the critical distance and definition of good
and bad points to help with clustering. To do this we begin by defining the notion
of a threshold graph.

Definition 6.8 (Threshold Graph) Define the T-threshold graph G, = (S, E;) to
be the graph produced by connecting all pairs {z,y} € (g) with d(z,y) < 7.

Lemma 6.9 (Threshold Graph Lemma) For a (1 + «,c)-approzimation-stable
instance, the threshold graph G, for T = 2d..;; has the following properties:
(i) For all z,y in the same X;, the edge {x,y} is in the graph G..
(it) For z € X; and y € X; for j #1, {z,y} is not an edge in G,. Moreover,
such points x,y do not share any neighbors in Gr.

Proof For part (i), since z,y are both good, they are at distance less than d..;; to
their common cluster center ¢}, by definition. Hence, by the triangle inequality, the
distance d(z,y) satisfies

d(z,y) < d(z,ci) +d(c;,y) <2 X deyir = T.

For part (ii), note that the distance from any good point = to any other cluster
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Figure 6.2 The high-level structure of a threshold graph

center, and in particular to y’s cluster center c?, is at least 5d..;;. Again by the

triangle inequality,

J’

d(may) > d(:L’,Cj) - d(y7 J) > 5dcmt - dcrit =27.

Since each edge in G, is between points at distance less than 7, the points x,y
cannot share any common neighbors. O

Hence, the graph G, for the above value of 7 is fairly simple to describe: each
X; forms a clique, and its neighborhood N¢, (X;) \ X; lies entirely in the bad set
B with no edges going between X; and X;;, or between X; and Ng_(X,i). See
Figure 6.2 for an illustration.

We now show how we can use this structure to find a clustering of error at most
€. We do this in two steps, beginning with the following lemma.

Lemma 6.10 There is a deterministic polynomial-time algorithm that given a
graph G = (S, E) satisfying properties (i), (ii) of Lemma 6.9 and given an upper
bound b on the number of bad points such that each |X;| > b+ 2, outputs a k-
clustering with each X; contained in a distinct cluster.

Proof Construct a graph H = (S, E’) where we place an edge {z,y} € E’ if x and
y have at least b common neighbors in G. By property (i), each X is a clique of size
> b+2in G, so each pair z,y € X; has at least b common neighbors in G and hence
{z,y} € E'. Now consider z € X; UN¢(X;), and y & X; U Ng(X;): we claim there
is no edge between x,y in this new graph H. First, £ and y cannot share neighbors
that lie in X; (since y € X; U Ng(X;)), nor in some Xj; (since z ¢ X; U Ng(X;)
by property (ii)). Hence the common neighbors of z,y all lie in B, which has size
at most b. Moreover, at least one of x and y must itself belong to B for them to
have any common neighbors at all (again by property (ii))—hence, the number of
distinct common neighbors is at most b — 1, which implies that {x,y} ¢ F’.

Thus each X; is contained within a distinct component of the graph H. Note
that the component containing some X; may also contain some vertices from B;
moreover, there may also be components in H that only contain vertices from B.
But since the X;’s are larger than B, we can obtain the claimed clustering by
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taking the largest k£ components in H, and adding the vertices of all other smaller
components in H to any of these, using this as the k-clustering. O

We now show how we can use Lemma 6.10 to find a clustering that is e-close to
Cr when all clusters are large. The algorithm will run in two phases: first creating a
threshold graph and using the algorithm of Lemma 6.10 to get an initial clustering,
and then running a second “Lloyd’s-like” step to re-cluster points based on their
median distances to the initial clusters, which will fix most of the errors from the
first step. For simplicity, we begin by assuming that we are given the value of

Wang = %, and then we show how this assumption can be removed.

Theorem 6.11 (Large clusters, known wqayg) There is an efficient algorithim such
that if the given clustering instance (M, S) is (1 + «, €)-approzimation-stable for
the k-median objective and each cluster in Cr has size at least (3 + 10/a)en + 2,
then given Wayg it will find a clustering that is e-close to Cr.

Proof Let us define b := (1+45/a)en. By assumption, each cluster in the target clus-
tering has at least (34+10/a)en+2 = 2b+ en+2 points. Since the optimal k-median
clustering C* differs from the target clustering by at most €*n < en points, each
cluster C;} in C* must have at least 2b+ 2 points. Moreover, by Proposition 6.7(i),
the bad points B have |B| < b, and hence for each 1,

X, = |G\ Bl > b+ 2.

Now, given wgyg, We can construct the graph G, with 7 = 2dc;¢ (which we
can compute from the given value of wgyg), and apply Lemma 6.10 to find a k-
clustering C" where each X; is contained within a distinct cluster. Note that this
clustering C’ differs from the optimal clustering C* only in the bad points, and
hence, dist(C',Cr) < ¢* + |B|/n < O(c + ¢/a). However, our goal is to get e-close
to the target, which we do as follows.

Call a point x “red” if it is a bad point of the type given in part (a) of Lemma
6.5 (ie., wa(xr) — w(x) < Bderir), “yellow” if it is not red but is a bad point of the
type given in part (b) of Lemma 6.5 with t = 5 (i.e., w(z) > derit), and “green”
otherwise. So, the green points are those in the sets X;, and we have partitioned
the bad set B into red points and yellow points. Let ' = {C1,...,C}} and recall
that C’ agrees with C* on the green points, so without loss of generality we may
assume X; C C/. We now construct a new clustering C” that agrees with C* on
both the green and yellow points. Specifically, for each point = and each cluster Cj‘7
compute the median distance dpmedian (2, CJ’) between x and all points in CJ’-; then
insert x into the cluster C}’ for i = argmin ;d,edian (T, C’;) Since each non-red point
x satisfies we(x) — w(x) > bderit, and all green points g satisfy w(g) < depit, this
means that any non-red point x must satisfy the following two conditions: (1) for
a green point g; in the same cluster as = in C* we have

d(xagl) S w(x) + dcrit7
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and (2) for a green point go in a different cluster than x in C* we have
d(w7g2) > ’wz(l') - dcm’t > w(as) + 4dc7‘it‘

Therefore, d(z,g1) < d(x, g2). Since each cluster in C’ has a strict majority of green
points (even with point  removed) all of which are clustered as in C*, this means
that for a non-red point z, the median distance to points in its correct cluster with
respect to C* is less than the median distance to points in any incorrect cluster.
Thus, C” agrees with C* on all non-red points. Therefore, every point where C”
and Cr disagree must be either (i) a point where C* and Cr disagree or (ii) a red
point where C* and Cr agree. Since there are at most €*n of the former and at most
(e — €")n of the latter by Lemma 6.5, this implies dist(C”,Cr) < € as desired. For
convenience, the above procedure is given as Algorithm 1 below. O

Algorithm 1 k-median Algorithm: Large Clusters (given a guess w of wqyg)

Input: w, e <1, >0, k.

Step 1: Construct the 7-threshold graph G, with 7 = 2d..s = %%

Step 2: Apply the algorithm of Lemma 6.10 to find an initial clustering C’.
Specifically, construct graph H by connecting x,y if they share at least
b = (1 + 5/a)en neighbors in G, and let Cf,...,C}. be the k largest

components of H.

Step 3: Produce clustering C” by reclustering according to smallest median dis-
tance in C'. That is, C) = {z :i = argminjdmedmn(x,C’J’-)}.
Step 4: Output the k clusters C7,...,C}.

We now extend the above argument to the case where we are not given the value
of Wyyg.

Theorem 6.12 (Large Clusters, unknown wqye) There is an efficient algorithm
such that if the given instance (M,S) is (1 + «, €)-approximation-stable for the
k-median objective, and each cluster in Cp has size at least (4 4+ 15/a)en + 2, the
algorithm will produce a clustering that is e-close to Cp.

Proof The algorithm for the case that we are not given the value wg,4 is the
following: we run Steps 1 and 2 of Algorithm 1 repeatedly for different guesses w of
Waug, Starting with w = 0 (so the graph G, is empty) and at each step increasing
w to the next value such that G, contains at least one new edge (so we have at
most n? different guesses to try). If the current value of w causes the k largest
components of H to miss more than b := (1 4+ 5/a)en points, or if any of these
components has size < b, then we discard this guess w, and try again with the next
larger guess for w. Otherwise, we run Algorithm 1 to completion and let C” be the
clustering produced.
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Note that we still might have w < wgyg, but this just implies that the resulting
graphs G, and H can only have fewer edges than the corresponding graphs for the
correct wgyg. Hence, some of the X;’s might not have fully formed into connected
components in H. However, if the k largest components together miss at most b
points, then this implies we must have at least one component for each X;, and
therefore exactly one component for each X;. So, we never misclassify the good
points lying in these largest components. We might misclassify all the bad points (at
most b of these), and might fail to cluster at most b of the points in the actual X;’s
(i.e., those not lying in the largest k components), but this nonetheless guarantees
that each cluster C] contains at least |X;| —b > b+ 2 correctly clustered green
points (with respect to C*) and at most b misclassified points. Therefore, as shown
in the proof of Theorem 6.11, the resulting clustering C” will correctly cluster all
non-red points as in C* and so is at distance at most (€ — €*) 4+ €* = € from Cr. For
convenience, this procedure is given as Algorithm 2 below. O

Algorithm 2 k-median Algorithm: Large Clusters (unknown wgyg)

Input: e <1, a >0, k.

For j=1,2,3... do:

Step 1: Let 7 be the jth smallest pairwise distance in S. Construct 7-threshold

graph G..
Step 2: Run Step 2 of Algorithm 1 to construct graph H and clusters C1, ..., C}.
Step 3: If min(|Cy[,...,|C,]) > band |C{U...UCL| > n(l —¢—5¢/a), run Step

3 of Algorithm 1 and output the clusters C7, ..., C}/ produced.

6.3.4 Handling small clusters

Small target clusters introduce additional challenges. One is that modifying a clus-
tering C by reassigning en points into different clusters may no longer produce a
clustering C’ that is e-far from C. For example, if two clusters C; and C; in C are
both small, then moving all points from C; into C; and moving all points from
Cj into C; produces the exact same clustering as at the start. However, it turns
out that any set of en reassignments must contain a subset of size at least ¢'n for
€’ > ¢/3 that indeed create a clustering C’ that is ¢-far from the original C (Balcan
et al., 2013). This allows for a slightly weaker analog of Lemma 6.5 to be shown.
Another challenge is that in growing the threshold 7, it can be difficult to tell when
to stop. In particular, if we grow the threshold until the kth largest cluster produced
has more than b points, we may have gone too far — merging two large clusters and
producing a high-error solution. However, this can be addressed by first running
any constant-factor k-median approximation to get an estimate wqyg for wavg, and
then using that quantity inside the algorithm. Finally, there may be some clusters
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that are dominated by bad points. Nonetheless, this can be handled as well, though
we can no longer run the re-clustering phase (Step 3) of algorithm 1, resulting in
a solution that is O(e + €/a)-close to the target rather than e-close. The formal
guarantee is in Theorem 6.3.

6.4 k-Means, Min-Sum, and Other Clustering Objectives

Similar results to those presented above for the k-median problem are also known for
the k-means and min-sum clustering objectives. The k-means score of a clustering
is defined similarly to the k-median score, except we square the distances:

Dmeans(C) = Z min Y d(z,¢)?. (6.3)

In min-sum clustering, the objective value is the sum of all pairwise intra-cluster
distances.

k
q)minsum(c) = Z Z Z d(ZB,y). (64)

=1 zeC; yeC;

E.g., in a uniform metric space, all clusterings have the same k-median or k-means
cost, but the min-sum objective would be optimized by making all clusters equal
in size.

For the k-means problem, there is an analogous result to Theorem 6.3:

Theorem 6.13 k-Means: General Case (Balcan et al., 2013): There is an
efficient algorithm that will produce a clustering that is O(e+¢/a)-close to the target
clustering Ct whenever the instance satisfies (1 + «, €)-approzimation-stability for
the k-means objective.

The min-sum objective is more challenging to analyze because the contribution
of any given datapoint to the overall cost depends on the size of the cluster it is
in. In fact, unlike the k-median and k-means problems that have constant-factor
approximation algorithms, the best approximation guarantee known for the min-
sum objective is an O(log'™°(n)) factor (Bartal et al., 2001).

Balcan et al. (2013) give a bound for min-sum clustering of the form in Theorem
6.13 above but only under the assumption that all target clusters have size at least
cen/a for a sufficiently large constant c. Balcan and Braverman (2009) extend this to
general cluster sizes, so long as one is given up-front a constant-factor approximation
to the objective; else their algorithm produces a list of O(loglogn) solutions such
that at least one solution will be O(e + €/a)-close to the target clustering.
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6.5 Clustering Applications

Voevodski et al. (2012) consider clustering applications in computational biology,
and show that approximation-stability can be a useful guide in designing algorithms
for them, especially when those settings come with additional constraints. Specif-
ically, in the application considered by Voevodski et al. (2012), one is not given
the distances between all datapoints up front. Instead, one can make a limited
number of one-versus-all queries: proposing a query point and running a proce-
dure that returns its distance to all other points in the dataset. They design an
algorithm that, assuming (c, €)-approximation-stability for the k-median objective,
finds a clustering that is e-close to the target by using only O(k) such one-versus-all
queries in the large cluster case, and furthermore is faster than the algorithm we
presented here. They then use their algorithm to cluster biological datasets in the
Pfam (Finn et al., 2010) and SCOP (Murzin et al., 1995) databases, where the
points are proteins and distances are inversely proportional to their sequence simi-
larity. The Pfam and SCOP databases are used in biology to observe evolutionary
relationships between proteins and to find close relatives of particular proteins. Vo-
evodski et al. (2012) show that their algorithms are not only fast on these datasets,
but also achieve high accuracy. In particular, for one of these sources they obtain
clusterings that almost exactly match the given classification, and for the other, the
accuracy of their algorithm is comparable to that of the best known (but slower)
algorithms using the full distance matrix.

6.6 Nash Equilibria

We now consider the problem of finding approximate Nash equilibria from the
perspective of approximation stability.

Let (R, C) denote a 2-player, n-action bimatrix game. Here, R is the payoff matrix
for the row player and C' is the payoff matrix for the column player. A (mixed)
strategy is a probability distribution over n actions, which we will represent as a
column vector. Let A,, denote the strategy space, that is, the set of vectors in [0, 1]"
whose entries sum to 1. The goal of each player is to maximize its expected payoff.
A pair of strategies (p,q) (p for the row player and ¢ for the column player) is a
Nash equilibrium if neither player has any incentive to deviate; that is,

e Forallp’ € A, p"Rq < pT Rq.
e Forall ¢ € A, pTCq < pTCq.

A pair of strategies (p,q) is an approximate Nash equilibrium if no player has a
large incentive to deviate. More formally, assume the matrices R, C have all entries
in the range [0,1]. We then say that (p, q) is an a-approzimate equilibrium if

e Forallp’ € A, pTRq < p"Rq + o
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e Forall¢ € A, pTCq < pTCq+ a.

We say that (p, q) is a well-supported a-approximate Nash equilibrium if only actions
whose payoffs are within « of the best-response to the opponent’s strategy have
positive probability. That is, if 7 is in the support of p, then el Rq > max; e;[’Rq—oz7
and similarly if 7 is in the support of ¢ then p” Ce; > max; pTCej — «, where e; is
the unit vector with 1 in coordinate .

Finding approximate equilibria in general n x n bimatrix games appears to be
a challenge computationally. Lipton et al. (2003) show that there always exist a-
approximate equilibria with support over at most O((logn)/a?) actions, which leads
to an nOogn/a®) time algorithm for computing a-approximate equilibria. This is
the fastest general algorithm known, and Rubinstein (2016) shows that under the
Exponential Time Hypothesis for PPAD, there is no algorithm with running time
nOUos™*n) fo; any constant § > 0. The associated structural statement is also
known to be existentially tight (Feder et al., 2007). The smallest value of « for
which an a-approximate equilibrium is known to be computable in polynomial
time is is 0.3393 (Tsaknakis and Spirakis, 2007).

However, one reason we might wish to find an approximate Nash equilibrium
is to predict how people will play. If we imagine that people will indeed play an
approximate Nash equilibrium, but beyond that we wish to make no additional
assumptions on player behavior, then for play to be predictable in principle this
requires that all approximate equilibria be close together. That is, if we anticipate
people will play an a-approximate equilibrium and wish to predict mixed strategies
up to, say, a variation distance €, then we will want the game to satisfy («, €)-
approximation stability.?

Awasthi et al. (2010a) show that games satisfying («, ¢)-approximation-stability
indeed have additional useful structural properties. Specifically, if ¢ < 2o — 602,
then there must exist an O(«a)-equilibrium where each player’s strategy has support
size O(1/a). For constant « this implies a polynomial-time algorithm for comput-
ing O(a)-equilibria. For general «,e such games must have an a-equilibrium of
support size O((;:;) log(1 + 1)log(n)); this does not lead to a polynomial-time al-
gorithm, but at least gives a substantial reduction in the dependence on o when
e = O(a), for instance. Note also that o and € need not be constants, so this gives a
quasi-polynomial time algorithm for finding, say, 1/poly(n)-approximate equilibria
in games that are sufliciently stable at that value of «. This is especially interesting
because it is known to be PPAD-hard to find 1/poly(n)-approximate equilibria in
general games. See Balcan and Braverman (2017) for further discussion.

An example. As a simple example of an approximation-stable game, consider

5 For concreteness, we define the distance between the strategy pair (p, q) and the strategy pair
(p’,q") as max[d(p, p’), d(q,q")] where d(.,.) is variation distance.
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the prisoner’s dilemma (with payoffs scaled to [0, 1]):

0.75 0 0.75 1
R*[ 1 0.25} C*[ 0 0.25}

Here, the only Nash equilibrium is to both play action 2 (defecting), resulting in
a payoff of 0.25 to each, even though both playing action 1 (cooperating) would
produce payoff 0.75 to each. This game is («, €)-approximation stable for o = ¢/4
for any € < 1 because if any player puts an e probability mass on action 1, then (no
matter what the other player is doing) that player will have incentive €/4 to deviate.
Further examples of natural approximation-stable games are given in Exercises 6.4
and 6.5.

Approximation stability and perturbation stability. Balcan and Braver-
man (2017) prove an interesting connection between approximation stability and
perturbation-stability (discussed in Chapter 5) for the Nash equilibrium problem.
Specifically, they show that if (p, q) is a well-supported approximate Nash equilib-
rium in game (R, C'), then there must exist a nearby game (R, C’) such that (p, q)
is an (exact) Nash equilibrium in (R’, C”), and vice-versa. This implies that assum-
ing that all well-supported approximate equilibria are close together is the same as
assuming that all exact equilibria in slightly perturbed games are close together. In
addition, they extend the above general support-size statement to this assumption,
as well as to a reversal of quantifiers when the total number of equilibria is poly-
nomial in n (assuming that for each equilibrium in a perturbed game there exists
a close equilibrium in the original game, rather than assuming that there exists an
equilibrium in the original game that is close to all equilibria in perturbed games).

6.7 The Big Picture

We now step back and reflect on how approximation stability may be useful and
what it can tell us. First, approximation stability allows us to formalize what typi-
cally are informal motivations for objective functions that can be measured from the
data, when the true goal is to find an unknown target solution. If an algorithm can
be designed for approximation-stable instances, it means that this algorithm will
perform well on any instances for which that motivation is well-justified, possibly
even bypassing approximation-hardness barriers with respect to the true goal.
Second, approximation-stability provides an interesting implication through its
contrapositive. Suppose an algorithm designed for approximation-stability does not
perform well on typical instances from a given domain, e.g., as in the domains
considered by Schalekamp et al. (2010). This means that those instances are not
approximation-stable, which in turn means that if an algorithm is to perform well
on them, it will not be solely due to its ability to achieve a good approximation to
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the given objective function. Instead, one should aim to look for other criteria or
algorithmic properties, perhaps in concert with performance on the objective. That
is, approximation-stability can help motivate and provide guidance in the search
for additional theoretical guarantees beyond approximation ratio.

Third, approximation-stability can provide a useful design guide for algorithms in
practice. As seen in the work of Voevodski et al. (2012) above on clustering protein
sequences from limited information, if one is in a new situation and unsure about
what kind of algorithm would be best, asking “can we design an algorithm that
operates under our given constraints and would do well if the input was sufficiently
approximation-stable?” can help in producing highly practical methods, regardless
of whether stability is indeed perfectly satisfied in the instances.

6.8 Open Questions

One problem for which an approximation-stability result would be quite interesting
is sparsest cut. Given a graph G = (V, E), the sparsest cut problem asks to find
the cut (S,V'\ S) that minimizes Z SV This problem is NP-hard and the
best approximation known is a factor O(y/logn) (Arora et al., 2009). One common
motivation for sparsest cut is that nodes might represent objects of two types (say,
images of cats and images of dogs), edges might represent similarity, and the hope
is that the correct partition (cats on one side and dogs on the other) would in
fact be a sparse cut. Notice that this is a problem of recovering a target solution.
From this perspective, a natural question then is: suppose an instance satisfies (¢, €)
approximation-stability for sparsest cut, even for a large constant c. Can one use
this to efficiently find a solution that is O(¢)-close to the target? If so, then this
would be achieving the benefits of a constant-factor approximation even if we do
not in general know how to achieve a constant-factor approximation.

Another type of problem for which approximation-stability could be quite inter-
esting to consider is phylogenetic tree reconstruction. Here, the goal is to reconstruct
an unknown evolutionary tree for a given set of current objects (species, languages,
etc.), by optimizing some quantity over the current objects. Typically, the quan-
tity being optimized is motivated by a specific postulated probabilistic model for
how mutations occur. However, it would be interesting to obtain guarantees under
non-probabilistic stability assumptions as well.

Finally, the MAX-SAT problem could be interesting to consider in this context.
The MAX-SAT problem is sometimes used to model solution discovery problems,
including problems of learning and clustering (Berg et al., 2015), so approximation-
stability results would be of interest here as well.
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6.9 Relaxations

Balcan et al. (2009a) consider a relaxation of (c, €)-approximation-stability that
allows for the presence of noisy data: data points for which the (heuristic) dis-
tance measure does not reflect cluster membership well, which could cause stability
over the full dataset to be violated. Specifically, they define and analyze a no-
tion of (v, ¢, €)-approximation-stability, which requires that the data satisfies (¢, €)
approximation-stability only after a v fraction of the data points have been removed.

It would also be interesting to consider relaxations that place an assumption
only on c-approximations satisfying some additional condition that natural approx-
imation algorithms tend to provide. For example, suppose we require only that
c-approximations that are also local optima under some reasonable locality notion
must be e-close to the target. Can one extend positive results like those above to
weaker assumptions of this form as well?

6.10 Bibliographic Notes

The notion of approximation-stability for clustering first appeared in Balcan et al.
(2008), though its implications were not studied in detail until Balcan et al. (2009b).
The terminology used in this chapter follows Balcan et al. (2013). The approximation-
stability results for clustering and Nash equilibria described in this chapter are
primarily from Balcan et al. (2013); Awasthi et al. (2010a); Balcan and Braver-
man (2017). Empirical work described on clustering biological sequences is from
Voevodski et al. (2012). Other work on approximation-stability, not discussed here,
includes work analyzing k-means++ under approximation-stability (Agarwal et al.,
2015) and on correlation-clustering (Balcan and Braverman, 2009).
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Exercises

6.1 Prove that Equation 6.2 defining the distance between k-clusterings is a met-
ric. Specifically, show that (a) dist(C,C’) is symmetric and (b) it satisfies the
triangle inequality. Note: the trickier property here is (a).

6.2 What is the expected distance dist(C,C’) between two random k-clusterings
C,C’ of a set of n points, in the limit as n — co?

6.3 Consider k-median clustering for k& = 2. Give an example of a set of points
satisfying (1.4,0) approximation-stability (i.e., all c-approximations for ¢ <
1.4 are identical to the target clustering) but not (1.6,0.3) approximation-
stability (i.e., there exists a c-approximation for ¢ < 1.6 that has distance at
least 0.3 from the target clustering). Is your example 1.6-perturbation-resilient
(Chapter 5)?

6.4 Consider the matching pennies game (with payoffs scaled to [0, 1]):

10 0 1
welov] sV o]
The unique Nash equilibrium of this game is for both players to play (0.5,0.5),
giving each an expected payoff of 0.5. Prove that this game is (3/16,1/4)-
approximation stable. That is, for any strategy pair (p,q) such that at least
one of p or ¢ puts more than 3/4 probability on one of its two actions, at least
one player must have at least a 3/16 incentive to deviate (there must be some
action they can play in which their expected gain is larger than their current
expected gain by at least 3/16).
6.5 Consider the game of rock-paper-scissors (with payoffs scaled to [0, 1]):

05 0 1 05 1 0
R = 1 05 0 C= 0 05 1
1 05 1 0 0.5

Prove that this game is (o, 4a)-approximation stable for any a < 1/6.



