
TTIC 31290: Machine Learning for Algorithm Design (Fall 2025)

Avrim Blum and Dravyansh Sharma

Lecture 9: 10/28/25 Lecturer: Avrim Blum (Notes by Dravyansh Sharma)

Outline for today

• Piecewise Decomposable Function Classes and Generalization

• Examples

1 Piecewise Decomposable Function Classes and Generalization

Let U = {uρ : X → R | ρ ∈ P} be a family of functions from X to R. For each instance x ∈ X the
dual function is defined as

u∗x(ρ) := uρ(x),

and let
U∗ = {u∗x : P → R | x ∈ X }.

denote the dual function class.

We will typically analyze the structure of the dual utility functions. Often, we will show that the
dual utility functions have a piecewise–decomposable structure defined below.

Definition 1 (Piecewise–Decomposable Function Class). A function class H ⊆ RP that maps a
domain P to R is (F ,G, k)-piecewise decomposable for a class G ⊆ {0, 1}P of boundary functions
and a class F ⊆ RP of piece functions if the following holds: for every h ∈ H, there are k boundary
functions g1, . . . , gk ∈ G and a piece function fb ∈ F for each bit vector b ∈ {0, 1}k such that for
all ρ ∈ P, h(ρ) = fbρ(ρ) where bρ = (g1(ρ), . . . , gk(ρ)) ∈ {0, 1}k.

For example, say the domain P = Rd. We can express functions that are piecewise constant with at
most L linear boundaries as (F ,G, k)-piecewise decomposable by setting F to be the set of constant
functions, G to be the set of linear thresholds and setting k = L.

Theorem 1 (Pseudodimension Bound for Piecewise–Decomposable Dual Classes). Let U be as
above and suppose that its dual class U∗ is (F ,G, k)–piecewise decomposable. Let dF = Pdim(F∗)
and dG = VCdim(G∗). Then

Pdim(U) = O(dF + dG log k) .

Proof. Let x1, . . . , xm ∈ X be m arbitrary problem instances and r1, . . . , rm ∈ R be m arbitrary
thresholds. We seek to bound the number of sign patterns

|{
(
sign(uρ(x1)− r1), . . . , sign(uρ(xm)− rm)

)
: ρ ∈ P}|,

or equivalently,

1

|{
(
sign(u∗x1

(ρ)− r1), . . . , sign(u
∗
xm

(ρ)− rm)
)
: ρ ∈ P}|.

We first prove the following.

Lemma 1. Given x1, ..., xm, there is a finite partition of P into at most M < (ekm/dG)
dG subsets

P1, . . . , PM such that for each subset Pj, there exist piece functions f
(j)
1 , . . . , f

(j)
m ∈ F such that

u∗xi
(ρ) = f

(j)
i (ρ) for all parameters ρ ∈ Pj and i ∈ [m].

Proof of Lemma 1. Consider all boundary functions {g1, . . . , gT } of the dual functions u∗xi
across

the instances xi for i ∈ [m]. Since each u∗xi
is (F ,G, k)-piecewise decomposable, we have T ≤ km.

Consider the set of binary patterns

M = {(g1(ρ), . . . , gT (ρ)) : ρ ∈ P}.

We want to bound

|M| ≤ max
{g′1,...,g′T }⊆G

|{(g′1(ρ), ..., g′T (ρ) : ρ ∈ P}|

= max
{g′1,...,g′T }⊆G

|{(ρ(g′1), ..., ρ(g′T) : ρ ∈ P}|

= ΓG∗(T),

where G∗ is the dual function class of G and we define ρ(g) = g(ρ).

By Sauer’s Lemma applied to G∗, we have |M| < (eT/dG)
dG ≤ (ekm/dG)

dG which implies the
Lemma by defining Pi to be the set of parameter values corresponding to each sign pattern in
M and recalling that the piece function for each instance xi are fixed once the sign pattern with
respect to all its boundary functions is fixed (Definition 1).

Now for any fixed Pj ⊆ P, by definition of the partition we have:

∣∣∣∣∣∣∣

 sign(u∗x1

(ρ)− r1)
...

sign(u∗xm
(ρ)− rm)

 : ρ ∈ Pj


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣

 sign(f

(j)
1 (ρ)− r1)

...

sign(f
(j)
m (ρ)− rm)

 : ρ ∈ Pj


∣∣∣∣∣∣∣ .

Now applying Sauer’s Lemma to the dual function class F∗ of the piece function class F gives that
for each Pj , the above set has size at most (em/dF)

dF . Thus, across all of P, the number of sign
patterns is at most (ekm/dG)

dG(em/dF)
dF . For x1, . . . , xm to be shattered, we have

2m ≤ (ekm/dG)
dG(em/dF)

dF .

To simplify this, we recall the fact lnx ≤ αx− lnα− 1 for all α, x > 0 from a previous lecture.

2

m ≤ dG log(ekm/dG) + dF log(em/dF)

≤ 2 [dG ln(ekm/dG) + dF ln(em/dF)]

= 2 [dG(1 + ln k) + dF + dG (ln(m)− ln(dG)) + dF (ln(m)− ln(dF))]

≤ 2

[
dG(1 + ln k) + dF + dG

(
m

8dG
− ln

1

8dG
− 1− ln(dG)

)
+ dF (ln(m)− ln(dF))

]
= 2

[
dG(1 + ln k) + dF +

m

8
+ dG ln

8

e
+ dF (ln(m)− ln(dF))

]
≤ 2

[
dG(1 + ln k) + dF +

m

8
+ dG ln

8

e
+

m

8
+ dF ln

8

e

]
≤ m

2
+ 2[dG(3 + ln k) + 3dF].

This implies the claimed pseudo-dimension bound.

2 Examples

We will now illustrate some applications of the above result to algorithm design for some classical
problems.

2.1 Maximum weighted independent set

Let G = (V,E) be an undirected graph with |V | = n vertices and nonnegative vertex weights
w : V → R≥0. The Maximum Weight Independent Set (MWIS) problem is:

max
S⊆V independent

w(S) :=
∑
v∈S

w(v).

This problem is NP-hard. A common greedy algorithm constructs an independent set incrementally
by using a scoring rule that depends on the weight and degree of the vertices.

1. Initialize S ← ∅.

2. If there are no vertices in G, return S.

3. Let v′ be the vertex with the largest score w(v)
(d(v)+1)α , where d(v) is the degree of v in the

current graph.

4. S ← S ∪ {v′}.

5. Remove v′ and all its neighbors. Go back to Step 2.

A natural choice for the utility function is the total weight of the independent set of vertices
returned by the algorithm, uα(G) =

∑
v∈Sα

w(v), where Sα is the set of vertices returned by the
above greedy algorithm with parameter α.

3

Theorem 2. Let U = {uα : α ≥ 0}. Then Pdim(U) = O(log n).

Proof Sketch. We first show that for a fixed weighted graph G, the dual utility function u∗G(α) is
piecewise constant with O(n4) pieces. The argument is similar to that for the greedy algorithm for
knapsack from the last lecture, except that now the degree of the vertex d(v) may change when we
update the graph in Step 5. A critical point satisfies w(v1)/(1 + d1)

α = w(v2)/(1 + d2)
α for some

vertices v1, v2 ∈ V and for some d1, d2 ∈ [n]. This implies the claimed O(n4) bound.

To bound the pseudo-dimension of U , we can use Theorem 1. The class of piece functions consists of
constant functions (dF = 1), the class of boundary functions consists of thresholds in one-dimension
(dG = 1), and k = O(n4). Using Theorem 1, Pdim(U) = O(log n).

2.2 Dynamic Programming for Sequence Alignment

Sequence alignment is a fundamental combinatorial problem. It has applications to computational
biology. For example, to compare two DNA or RNA sequences the standard approach is to align the
two sequences in order to detect similar regions. However, the optimal alignment depends on the
relative costs or weights used for specific substitutions, insertions/deletions, etc. in the sequences.
Given a set of weights, the optimal alignment computation is typically a simple dynamic program.
Depending on the application, different weights can lead to the “best alignments”. Our goal is
to learn the weights, such that the alignment produced by the dynamic program has application-
specific desirable properties.

Formally, given a pair of sequences s1 ∈ Σm, s2 ∈ Σn over some alphabet Σ of lengths m = |s1|
and n = |s2| (WLOG m ≤ n), and a ‘space’ character − /∈ Σ, a space-extension t of a sequence s
over Σ is a sequence over Σ ∪ {−} such that removing all occurrences of − in t gives s. A global
alignment (or simply alignment) of s1, s2 is a pair of sequences t1, t2 such that |t1| = |t2|, t1, t2 are
space-extensions of s1, s2 respectively, and for no 1 ≤ i ≤ |t1| we have t1[i] = t2[i] = −.
Let s[i] denote the i-th character of a sequence s and s[: i] denote the first i characters of se-
quence s. Suppose we have two features, mismatches (or substitutions) with cost ρ1 and spaces (or
insertions/deletions) with cost ρ2. The alignment that minimizes the cost for strings s1, s2 with
|s1| = m, |s2| = nmay be obtained using a dynamic program in O(mn) time. The dynamic program
is given by the following recurrence relation for the cost function which holds for any i, j > 0, and
for any cost parameters ρ = (ρ1, ρ2),

C(s1[: i], s2[:j], ρ) =



C(s1[: i− 1], s2[:j − 1], ρ) if s1[i] = s2[j],

min
{
ρ1 + C(s1[: i− 1], s2[:j − 1], ρ),

ρ2 + C(s1[: i− 1], s2[:j], ρ),

ρ2 + C(s1[: i], s2[:j − 1], ρ)
} if s1[i] ̸= s2[j].

The base cases are C(ϕ, ϕ, ρ) = 0, C(ϕ, s2[: j], ρ) = jρ2,= C(s1[: i], ϕ, ρ) = iρ2 for i, j ∈ [m] × [n].
Here ϕ denotes the empty sequence. We can write down a similar recurrence for computing the
optimal alignment as well.

More generally, suppose there are d alignment features given by l1(s1, s2, t1, t2), . . . , ld(s1, s2, t1, t2),
where each li(·) gives some notion of“badness” for aligning strings s1, s2 as t1, t2. The overall cost

4

may be given by a linear combination

c(s1, s2, t1, t2, ρ) =

d∑
k=1

ρklk(s1, s2, t1, t2),

where ρ = (ρ1, . . . , ρd) are the parameters that govern the relative weight of the features. Assume
we have an algorithm Aρ that minimizes this objective (which might be a dynamic programming
algorithm if the individual cost functions lk are sums of local quantities).

Let utility function u(s1, s2, t1, t2) denote the “ground truth” quality of the alignment t1, t2 for

strings s1, s2. Define uρ(s1, s2) as u(s1, s2, t
(ρ)
1 , t

(ρ)
2), where t

(ρ)
1 , t

(ρ)
2 is the alignment obtained using

algorithm Aρ.

Theorem 3. Let U denote the utility function class {uρ | ρ ∈ Rd} that measures the quality of the
alignment produced using different algorithm parameters ρ. We have Pdim(U) = O(dm log(m+n)).

Proof. We will show that the dual functions are (F ,G,m2(m+n)2m)-piecewise decomposable, where
F consists of constant functions Rd → R and G consists of linear thresholds in Rd. The above bound
then follows using Theorem 1. We first establish the following useful lemma.

Lemma 2. For a fixed pair of sequences s1, s2 ∈ Σm×Σn, with m ≤ n, there are at most m(m+n)m

distinct alignments.

Proof. For any alignment (t1, t2), by definition, we have |t1| = |t2| and for all i ∈ [|t1|], if t1[i] = −,
then t2[i] ̸= − and vice versa. This implies that t1 has exactly n − m more spaces than t2. To
prove the upper bound, we count the number of alignments (t1, t2) where t2 has exactly i spaces
for i ∈ [m]. There are

(
n+i
i

)
choices for placing the space in t2. Given a fixed t2 with i spaces,

there are
(

n
n−m+i

)
choices for placing the space in t1. Thus, there are at most

(
n+i
i

)(
n

n−m+i

)
=

(n+i)!
i!(m−i)!(n−m+i)! ≤ (m + n)m possibilities since i ≤ m. Summing over all i, we have at most

m(m+ n)m alignments of s1, s2.

Fix a pair of sequences s1 and s2. Let τ be the set of optimal alignments as we range over all
parameter vectors ρ ∈ Rd. By Lemma 2, we have |τ | ≤ m(m+n)m. For any alignment (t1, t2) ∈ τ ,
the algorithm Aρ will return (t1, t2) only if

d∑
i=1

ρili(s1, s2, t1, t2) ≥
d∑

i=1

ρili(s1, s2, t
′
1, t

′
2)

for all (t′1, t
′
2) ∈ τ \{(t1, t2)}. Therefore, there is a set H of at most

(|τ |
2

)
≤ m2(m+n)2m hyperplanes

such that across all parameter vectors ρ in a single connected component of Rd \H, the output of
the algorithm Aρ on (s1, s2) is fixed. This means that for any connected component R of Rd \H,
there exists a real value cR such that uρ(s1, s2) = cR for all ρ ∈ Rd. By the definition of dual,
u∗s1,s2(uρ) = uρ(s1, s2) = cR. For each hyperplane h ∈ H, let g(h) ∈ G denote the corresponding

halfspace. Order these k ≤
(|τ |
2

)
functions arbitrarily as g1, . . . , gk. For a given connected component

R of Rd \H, let bR ∈ {0, 1}k be the corresponding sign pattern with respect to g1, . . . , gk. Define
the piece function f (bR) = fcR , the constant function fcR(x) = cR for all x ∈ Rd. This gives us the
claimed piecewise decomposition. To complete the proof, note that dF = 1 and dG = d+ 1.

5

Additional Resources:

• Maria-Florina Balcan, Dan Deblasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. “How much data is sufficient to learn high-performing algorithms? Generalization
guarantees for data-driven algorithm design.” In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 919-932. 2021.

• Maria-Florina Balcan, Dan Deblasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. “How much data is sufficient to learn high-performing algorithms?” Journal of the
ACM 71, no. 5 (2024): 1-58.

• Maria-Florina Balcan, Christopher Seiler, and Dravyansh Sharma. “Accelerating ERM for data-
driven algorithm design using output-sensitive techniques.” Advances in Neural Information Pro-
cessing Systems 37 (2024): 72648-72687.

6

	Piecewise Decomposable Function Classes and Generalization
	Examples
	Maximum weighted independent set
	Dynamic Programming for Sequence Alignment

