
TTIC 31290: Machine Learning for Algorithm Design (Fall 2025)

Avrim Blum and Dravyansh Sharma

Lecture 8: 10/23/25 Lecturer: Dravyansh Sharma

Outline for today

• Sample complexity for infinite concept classes (agnostic case; real-valued case)

• Primal and dual function classes

• Piecewise-constant case

1 Sample complexity for infinite concept classes

Last time we showed a bound on the sample complexity of realizable PAC learning. We will now
look at extensions of the result to agnostic PAC learning and beyond the binary case to real-valued
functions.

1.1 Agnostic PAC Learning

We have the following sample complexity bound for agnostic PAC learning.

Theorem 1. Let C be an arbitrary concept space with VC dimension d. Then C is agnostic PAC
learnable with sample complexity

mC(ϵ, δ) = O

(
1

ϵ2

(
d ln

(
1

ϵ

)
+ ln

1

δ

))
.

For any D, and any ϵ, δ ∈ (0, 1), given an i.i.d. sample S of size at least mC(ϵ, δ) above, with
probability at least 1− δ over the draw of S, all hypotheses h ∈ C satisfy |errS(h)− errD(h)| ≤ ϵ.

A proof can be given using the same overall strategy as in the realizable case with a few modifica-
tions. We will describe below the main modifications.

Proof Sketch. We set the bad event B1 as: there exists h ∈ C with |errS(h)−errD(h)| > ϵ. Similarly
we modify B2 to be the event that for some h, the sample error on S and the “ghost sample” S′

differs by at least ϵ/2.

As before, using Chernoff bounds, Pr[B1] ≤ 2Pr[B2]. To bound Pr[B2], we again consider the
double sample U of size 2m to construct S, S′ and apply Hoeffding bounds to show that

Pr[|errS(h)− errS′(h)| > ϵ/2] ≤ e−ϵ2m/8,

and apply a union bound over ΓC(2m) hypotheses h as before.

1

A sharper analysis gets rid of the log 1
ϵ term (Anthony and Bartlett, 2001). It can be further shown

that the O
(
1
ϵ2

(
d+ ln 1

δ

))
bound on the sample complexity of agnostic PAC learning is optimal up

to constants.

1.2 Extension to real-valued functions

We have the following analogous result for real-valued functions (Anthony and Bartlett, 1999).

Theorem 2. Let C denote a class of functions with domain X and range [0, U], with pseudo-
dimension Pdim(C). For every distribution D over X, every ϵ > 0, and every δ ∈ (0, 1], if

m ≥ c
U2

ϵ2

(
Pdim(C) + ln

1

δ

)
,

for some absolute constant c, then with probability at least 1− δ over S ∼ Dm,∣∣∣∣∣∣ 1m
∑
xi∈S

h(xi)− Ex∼D[h(x)]

∣∣∣∣∣∣ < ϵ,

for every h ∈ C.

2 Primal and dual function classes

Recall our formulation for algorithm design as PAC Learning.

We have a set of problem instances of interest Π and a (potentially infinite) set A of algorithms. We
will typically have a parameterized family of algorithms given by a set of parameters P ⊆ Rd. That
is, each ρ ∈ P corresponds to an algorithm Aρ ∈ A. We also fix a utility function u : Π×P → [0, U],
where u(x, ρ) measures the performance of the algorithm with parameter setting ρ on problem
instance x ∈ Π. For example, u could denote the algorithm’s running time and H could be the
time-out deadline.

To apply the above theorem, we consider the class of functions U = {uρ : Π → [0, U] | ρ ∈ P},
where uρ(x) = u(x, ρ) for any x, ρ. We will call this the “primal” class of functions. We have the

sample complexity of uniform convergence for U is O
(
U2

ϵ2
(Pdim(U) + ln 1

δ)
)
.

However, characterizing the behavior of functions uρ (e.g. all behaviors of a clustering algorithm
as the instances are varied) is challenging. A useful analytical tool will be to consider the “dual”
functions U∗ = {u∗x : P → [0, U] | x ∈ Π}, where u∗x(ρ) = uρ(x) = u(x, ρ) for any x, ρ. The
advantage is that it will often be simpler to analyze the functions u∗x, which give the variation of
the algorithm performance as the parameter is varied for a fixed problem instance x.

3 Piecewise-constant case

A simple but widely occurring case is where ρ is a single real parameter. We have the following
useful lemma (Balcan, 2020).

2

Lemma 1. Suppose that for every instance x ∈ Π, the function u∗x(ρ) : R → R is piecewise constant
with at most N pieces. Then the family U = {uρ(x)} has pseudo-dimension O(logN).

Proof. Consider a fixed problem instance x ∈ Π. Since the function u∗x(ρ) is piecewise constant
with at most N pieces, this means there are at most N − 1 critical points such that between any
two consecutive critical points, the function u∗x(ρ) is constant.

Consider m problem instances x1, . . . , xm ∈ Π. Taking the union of their critical points, between
any two consecutive of these critical points we have that all of the functions u∗xi

(ρ) are constant.
These critical points break up the real line into at most (N − 1)m + 1 ≤ Nm intervals, and all
u∗xi

(ρ) are constant in each interval. Thus, overall there are at most Nm different m-tuples of values
produced over all ρ. Equivalently, the functions uρ(x) produce at most Nm different m-tuples of
function values on the m inputs x1, . . . , xm. However, in order to shatter the m instances, we
must have 2m different m-tuples of values to get all the 2m distinct above-below patterns. Solving
Nm ≥ 2m shows that only sets of instances of size m = O(logN) can be shattered.

We will now show an example application of the above lemma.

3.1 Greedy algorithms for Knapsack

As an example, a canonical problem we consider in this chapter is the knapsack problem. A knapsack
instance x consists of n items given by values v1, . . . , vn ∈ R≥0 and sizes s1, . . . , sn ∈ R+, and an
overall knapsack capacity C ∈ R+. The goal is to find the most valuable subset of items for which
the total size is at most C.

We analyze a family of greedy algorithms parametrized by a one dimensional set of parameters,
P = R. For ρ ∈ P, the algorithm Aρ is the following greedy procedure: Set the score of item i to
vi/s

ρ
i ; then, in decreasing order of score, add each item to the knapsack if there is enough capacity

left (breaking ties by selecting the item of smallest index).

The utility function uρ(x) = u(x, ρ) is defined as the total value of the items chosen by the greedy
algorithm Aρ with parameter ρ on input x.

Theorem 3. The family of utility functions UKnapsack = uρ(x) defined above has pseudo-dimension
O(log n), where n is the maximum number of items in an instance.

Proof. We will show that each dual function u∗x(ρ) is piecewise constant with at most
(
n
2

)
+1 pieces.

Then the above lemma gives the pseudo-dimension bound.

Fix a knapsack instance x. If two algorithms Aρ and Aρ′ differ (ρ < ρ′), then we must have some
first point where Aρ picks some item i and Aρ′ picks i′ ̸= i. This implies vi/s

ρ
i − vi′/s

ρ
i′ ≥ 0 but

vi/s
ρ′

i − vi′/s
ρ′

i′ ≤ 0. Since f(y) = vi/s
y
i − vi′/s

y
i′ is a continuous function of y, vi/s

y
i − vi′/s

y
i′ = 0

for some y in [ρ, ρ′]. Thus, u∗x(ρ) must be a constant function over any [ρ, ρ′] if there is no point
with vi/s

y
i − vi′/s

y
i′ = 0 for some pair of items i, i′. That is, it is piecewise constant with number of

critical points at most the number of distinct choices for i, i′.

If we scale (divide) the utility function above by the optimal value for the instance x, we have

u(x, ρ) ≤ 1 for all x, ρ. Now, O
(
logn/δ

ϵ2

)
problem instances are sufficient to learn a near-optimal

value of the greedy algorithm parameter ρ.

3

Additional Resources:

• Martin Anthony and Peter Bartlett, Neural Network Learning: Theoretical Foundations, Cam-
bridge University Press, 1999.

• Maria-Florina Balcan, “Data-Driven Algorithm Design” (book chapter). In Beyond Worst Case
Analysis of Algorithms, Tim Roughgarden (Ed). Cambridge University Press, 2020.

4

	Sample complexity for infinite concept classes
	Agnostic PAC Learning
	Extension to real-valued functions

	Primal and dual function classes
	Piecewise-constant case
	Greedy algorithms for Knapsack

