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Outline for today

• Pseudodimension Example

• Sauer’s Lemma

• Sample complexity for infinite concept classes (double sampling argument)

1 Pseudodimension Example

Consider the set of functions F = {fa,b(x) = ax + b : a, b ∈ R} defined from R → R. What is
Pdim(F)?

To show Pdim(F) ≥ 2, we construct a set of points x1, x2 ∈ R which is pseudoshattered by F . Let
x1 = 1, x2 = 2. We set thresholds r1 = r2 = 0. For each above-below pattern, we have

• above r1 on x1, above r2 on x2. Choose f1,0.

• above r1 on x1, below r2 on x2. Choose f−1, 3
2
.

• below r1 on x1, above r2 on x2. Choose f1,− 3
2
.

• below r1 on x1, below r2 on x2. Choose f−1,0.

To show Pdim(F) ≤ 2, we show that three distinct points x1 < x2 < x3 ∈ R cannot be pseudoshat-
tered by F . Let r1, r2, r3 ∈ R be some thresholds.

• Consider the (above, below, above) pattern, achieved by fa1,b1 (say).

• Consider the (below, above, below) pattern, achieved, if possible, by fa2,b2 .

We will show that both the above actually cannot be achieved for any choice of thresholds r1, r2, r3 ∈
R.
Note that we have

fa2,b2(x1) < r1 ≤ fa1,b1(x1),

fa2,b2(x2) ≥ r2 > fa1,b1(x2),

fa3,b3(x3) < r3 ≤ fa3,b3(x3).

Now g(x) := fa2,b2(x) − fa1,b1(x) is a linear function in x. But we have g(x1), g(x3) < 0, while
g(x2) > 0 (a contradiction!)
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2 Sauer’s Lemma

To reason about generalization for infinite hypothesis classes, we use the number of distinct labelings
realizable on a finite sample.

Definition 1 (Growth Function). For a hypothesis class H, define the growth function

ΓH(m) = max
S⊆X ,|S|=m

|{(h(x1), . . . , h(xm)) : h ∈ H}|.

That is, ΓH(m) counts the maximum number of distinct labelings H can induce on m points.

The following result gives an upper bound on the growth function of function classes with a bounded
VC dimension. By the definition of VC dimension, the growth function ΓH(m) = 2m for any m ≤ d,
since H achieves all 2m labelings on some set S of size d. However, this exponential growth with
m is replaced by a polynomial growth (for fixed d) once we increase m to beyond d as we will see
in the following well-known result.

Theorem 1 (Sauer’s Lemma). Let H ⊆ {0, 1}X with VCdim(H) = d. Then for any integer m ≥ d,

ΓH(m) ≤
d∑

i=0

(
m

i

)
.

In particular, ΓH(m) = O(md) when m ≥ d.

Proof. We will proceed by induction on both m, d.

Base cases. (a) d = 0, any m. No set of points can be shattered, so all points can be labeled only
in one way. ΓH(m) = 1 =

∑0
i=0

(
m
i

)
.

(b) m = 0, any d. RHS is 1, which bounds the number of labelings on a set of zero points.

Inductive step. d > 0,m > 0. Suppose the claim holds for all d′,m′ such that d′ +m′ < d+m.
Let S = {x1, . . . , xm} ⊆ X . Let HS be the set of hypotheses in H with domain restricted to S
(these capture all the behaviors of H on S, in particular achieve ΓH(m) labelings of S).

Fix arbitrary x ∈ S, say xm, and let S′ = S \{xm}. Now we consider the different ways hypotheses
in HS label S′. For each distinct labeling of S′ achieved by some function in HS , we have either
one or two distinct extensions to S (one if all such functions label xm identically, two otherwise).
Let H ′ be the subset of functions in HS with a unique “representative” for each labeling of S′

as follows: if there is a unique extension to S, we add that function to H ′, and if there are two
extensions, we add the one that labels xm as negative. Note that all the functions in HS \H ′ label
xm as positive.

Now, we claim that VCDim(HS \ H ′) ≤ d − 1. Note that if HS \ H ′ shatters T ′ ⊆ S′, then HS

shatters T ′ ∪ {xm}. This is by construction of H ′ (Think why? For each h ∈ HS \H ′ we have a
“twin” in H ′ with the negative label for xm. Also, HS \H ′ can only label xm positive.)

On the other hand, H ′ ⊆ HS , and so VCDim(H ′) ≤ d.
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By the induction hypothesis:

ΓH(m) = |HS | = |H ′|+ |HS/H
′| ≤

d∑
i=0

(
m− 1

i

)
+

d−1∑
i=0

(
m− 1

i

)

=

(
m− 1

0

)
+

d∑
i=1

((
m− 1

i

)
+

(
m− 1

i− 1

))

=

(
m

0

)
+

d∑
i=1

(
m

i

)
,

where we have used the Pascal identity
(
m
i

)
=

(
m−1
i

)
+
(
m−1
i−1

)
. This completes the induction.

Sauer’s Lemma shows that even though there may be infinitely many hypotheses, the number of
distinct labelings on a finite sample grows only polynomially withm once VC dimension is bounded.

3 The Fundamental Theorem of Statistical Learning Theory

But why do we care about the growth function? Turns out that we can upper bound the sample
complexity of agnostic PAC learning over H in terms of its growth function ΓH(m) (and by Sauer’s
lemma, therefore, also its VC dimension).

We first consider the realizable case (when the target concept c∗ belongs to the class C).

Theorem 2. Let C be an arbitrary concept space with VC dimension d. Then C is PAC learnable
in the realizable setting with sample complexity

mC(ϵ, δ) =
8

ϵ

(
d ln

(
16

ϵ

)
+ ln

2

δ

)
.

That is, for any D, any ϵ, δ ∈ (0, 1), and any target concept c∗ ∈ C, given a sample of size at
least mC(ϵ, δ) above, with probability at least 1 − δ, all hypotheses h with error errD(h) > ϵ are
inconsistent with the data.

Proof. We will first establish the following bound on the sample complexity in terms of the growth
function:

m ≥ max

{
4

ϵ

(
ln (ΓC(2m)) + ln

2

δ

)
,
8

ϵ

}
examples are sufficient for realizable PAC learning. We will then apply Sauer’s lemma to get the
above bound.

Define a “bad” event,
B1: ∃h ∈ C with errS(h) = 0 but errD(h) > ϵ.

Suppose S′ ∼ Dm is another sample (“ghost sample”) drawn i.i.d. from D. Given B1, the following
event is likely for sufficiently large m,
B2: ∃h ∈ C with errS(h) = 0 but errS′(h) > ϵ/2.
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Lemma 1. If m ≥ 8
ϵ , then Pr[B1] < 2Pr[B2].

Proof. Given some h ∈ C consistent with S but with errD(h) > ϵ, by Chernoff’s bounds, we have
Pr[errS′(h) ≤ ϵ/2] ≤ e−(1/2)2·(mϵ/2) < 1

2 . Thus, Pr[B2|B1] <
1
2 .

Or, Pr[B2] ≥ Pr[B2 ∧B1] = Pr[B2|B1] Pr[B1] > Pr[B1]/2.

This introduction of S′ is also called the “symmeterization trick”. It allows us to focus on bounding
Pr[B2], where B2 involves two finite samples.

Let’s imagine a different but equivalent process generating S and S′. Suppose we draw a sample
of size 2m from D, U ∼ D2m, and randomly partition it into two sets S, S′ of size m each.

Now, for B2 to happen, there must be some h ∈ C|U such that (a) for M ≥ mϵ/2 examples in U ,
h(x) ̸= c∗(x), and (b) all these examples end up in S′. For any fixed h ∈ C|U that satisfies (a), (b)

happens with probability at most
(
2m−M
m−M

)
/
(
2m
m

)
≤ 2−M ≤ 2−mϵ/2. By a union bound,

Pr[B2] ≤ ΓC(2m)2−mϵ/2.

Combined with Lemma 1, this gives us the bound on m in terms of the growth function. But both
LHS and RHS depend on m!

By Sauer’s Lemma, for 2m > d,

ΓC(2m) ≤
d∑

i=0

(
2m

i

)
≤

(
2em

d

)d

.

We use the fact lnx ≤ αx − lnα − 1 for all α, x > 0 (the function f(x) = lnx − αx is maximized
at x = 1

α), to simplify the above bound as

4

ϵ

(
ln (ΓC(2m)) + ln

2

δ

)
≤ 4

ϵ

(
d ln

(
2em

d

)
+ ln

2

δ

)
=

4

ϵ

(
d lnm+ d ln

(
2e

d

)
+ ln

2

δ

)
≤ 4

ϵ

(
d
( ϵ

8d
m− ln

( ϵ

8d

)
− 1

)
+ d ln

(
2e

d

)
+ ln

2

δ

)
=

m

2
+

4

ϵ

(
d ln

(
8d

eϵ

)
+ d ln

(
2e

d

)
+ ln

2

δ

)
=

m

2
+

4

ϵ

(
d ln

(
16

ϵ

)
+ ln

2

δ

)
.

Thus, it is sufficient to havem ≥ m
2 +

4
ϵ

(
d ln

(
16
ϵ

)
+ ln 2

δ

)
, which gives the desired sample complexity.

The above sample complexity bound is tight for arbitrary consistent learners (Auer and Ortner,
2007). It turns out the ln 1

ϵ factor can be removed in this sample complexity upper bound for some
more sophisticated learners achieving the optimal samplexity of Θ(1ϵ (d+ log 1

δ )) (Hanneke, 2015).
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