
TTIC 31290: Machine Learning for Algorithm Design (Fall 2025)

Avrim Blum and Dravyansh Sharma

Lecture 4: 10/09/25 Lecturer: Avrim Blum

Outline for today

• Structural approaches to Beyond-Worst-Case-Analysis

• Perturbation-Resilience

• Case study: k-clustering

• Certified algorithms

• Approximation-Stability

1 Structural approaches to BWCA

In the last class, we moved away from worst-case analysis by adding randomness to the instances. In
structural approaches to BWCA, we instead posit a property or structure that we might expect or
want instances to satisfy, and then design algorithms for instances having that property or structure.
In some cases, we can then argue that these algorithms will also have interesting guarantees even
on worst-case instances.

2 Perturbation-Resilience

For γ > 1, we’ll say that instance I ′ is a γ-perturbation of instance I if you can produce I ′ by
changing each value in I by a multiplicative factor between 1 and γ. An instance I of some
optimization problem is said to be “γ-Perturbation-resilient” if all γ-perturbations I ′ of I have the
same optimal solution (and no other). E.g., think of a clustering problem like k-center clustering.
Note that the perturbation could change the cost of the solution, but it shouldn’t change which
solution is optimal. Our goal, then, will be to design algorithms that we can prove will find optimal
solutions on γ-Perturbation-resilient instances for γ as small as possible.

A stronger goal, which is achievable for some problems, is to have a “γ-certified algorithm”. This
algorithm, given any instance I, produces a γ-perturbation I ′ of I and a solution s′ such that s′

is optimal for I ′. So, this is like “I couldn’t solve the exact problem you gave me, but here is an
optimal solution to this similar problem.” If instance I happens to be γ-perturbation-resilient, then
s′ will be optimal for I too.

1



3 Case study: Center-based k-clustering

Given n points x1, ..., xn in a metric space X, the k-median problem asks to find k centers c1, ..., ck
such that if you create k clusters by assigning each xi to its nearest cj , the total sum (or average)
distance between points and their assigned centers is minimized. The k-means problem asks the
same except to minimize the sum of squared distances. The k-center problem asks the same except
to minimize the maximum distance. We will call all of these objectives center-based because they
all involve finding k centers and then assigning points to their nearest center to minimize some
score that is a nondecreasing function of the distances between points and their associated centers.
In the discussion below, we will assume that the centers cj must belong to {x1, ..., xn}. We will
also call the clusters C1, ..., Ck where Cj is the set of points xi assigned to center cj .

Note 1: In this formulation, one shouldn’t think of k as a fixed constant like 3, since there’s a
trivial algorithm that runs in time polynomial in nk. (Can you see it?) Instead, one should think
of k as a parameter and we want to be polynomial in n and k.

Note 2: In this formulation, γ-perturbation resilience means that the optimal clusters C1, ..., Ck

should remain the same in any γ-perturbation, but it is allowed for the centers cj of those clusters
to move around.

We say that an instance I = {x1, ..., xn} satisfies γ-center-proximity if for all j, for all xi ∈ Cj , for
all j′ ̸= j, dist(xi, cj′) > γ · dist(xi, cj).
The γ-center-proximity property is an implication of γ-perturbation-resilience for any center-based
clustering objective. We can see this by arguing the contrapositive: if you didn’t have γ-center-
proximity, you could blow up all pairwise distances in Cj by a factor of γ (which maintains cj being
an optimal center for Cj) but then the optimal clustering could assign xi to cj′ rather than to cj .

So, what we’re going to do is focus on this implication of perturbation-resilience for most of our
analysis, and then get back to the specific objective function only in the last part. I’m going to
describe a result for γ = 3 from Awasthi et al [ABS12]. This was improved to γ = 1+

√
2 by Balcan

and Liang [BL16] and then to γ = 2 by Angelidakis et al [AMM17]. But the factor of 3 analysis is
simplest.

4 Efficient k-clustering of instances satisfying 3-center-proximity

First, let’s establish some useful implications of center-proximity.

Lemma 1. If an instance satisfies γ-center-proximity, then for any two clusters j and j′, any point
xi ∈ Cj and any xi′ ∈ Cj′, we have dist(xi, xi′) > (γ − 1)dist(xi, cj).

Proof. Suppose dist(xi′ , cj′) ≥ dist(xi, cj). Then by triangle inequality and center proximity we
get dist(xi, xi′) ≥ dist(xi′ , cj) − dist(xi, cj) > γ · dist(xi′ , cj′) − dist(xi, cj) ≥ (γ − 1) · dist(xi, cj).
Alternatively, if dist(xi, cj) > dist(xi′ , cj′) then we get dist(xi, xi′) ≥ dist(xi, cj′) − dist(xi′ , cj′) >
γ · dist(xi, cj)− dist(xi′ , cj′) ≥ (γ − 1) · dist(xi, cj).

So, for γ = 3 we have that every point xi in cluster Cj is more than twice as far away from all
points in a different cluster than it is to its own center. We now show that this can help us with a
useful implication.

2



Lemma 2. Suppose the instance satisfies 3-center-proximity. Then for any cluster Cj and any
partition of Cj into two nonempty sets A,B = Cj \ A, and any other cluster Cj′, the minimum
distance between A and B is strictly less than the minimum distance between Cj and Cj′.

Before proving Lemma 2, let’s see why this is useful. Consider running the “single-linkage” cluster-
ing algorithm. This algorithm starts will each node in its own cluster and then repeatedly merges
the two clusters whose minimum distance is smallest (minimum distance means the distance be-
tween the closest points in the two clusters). Suppose we run this algorithm until there is only one
cluster left. Notice that for any target cluster Cj , this algorithm will complete Cj into a cluster
before any subset of Cj is connected to anything else. This means that if you examine the binary
tree on clusters produced by this algorithm, the true target clusters C1, ..., Ck will all be nodes in
this tree. They might not all be at the same level, but together they will form a pruning of this
tree. Now what we can do is run Dynamic Programming on this tree, using the original objective
function (like k-median or k-means). Starting at the leaves and working upward, for every k′ ≤ k,
we compute the cheapest clustering using at most k′ clusters we can get from the subtree rooted at
that node. For any given node C, since we’ve already computed these results for the two children
of C, the answer for some k′ for C is just the minimum out of all k′′ ≤ k′ of the cost for using k′′

clusters on the left and k′ − k′′ clusters on the right.

OK, so now let’s complete the analysis by proving Lemma 2.

Proof of Lemma 2. Consider a cluster Cj and some partition of Cj into two nonempty sets A and
B. Say the minimum distance between Cj and some other cluster Cj′ is given by some x ∈ Cj and
x′ ∈ Cj′ . We want to show that dist(x, x′) is strictly larger than the minimum distance between A
and B. There are two cases. The easy case is that x and center cj are on different sides of the A,B
partition. Then Lemma 1 immediately gives us that dist(x, x′) > 2 · dist(x, cj) ≥ mindist(A,B).
So, suppose x and cj are both on the same side, say A.

Let y be a point in B. By 3-center-proximity and triangle inequality and Lemma 1 (in order) we
have

3 · dist(y, cj) < dist(y, cj′) ≤ dist(y, x) + dist(x, x′) + dist(x′, cj′) < dist(y, x) +
3

2
· dist(x, x′).

Also, by triangle inequality and Lemma 1 (in order) we have

dist(y, x) ≤ dist(y, cj) + dist(cj , x) < dist(y, cj) +
1

2
· dist(x, x′).

Putting these together we have

3 · dist(y, cj) < dist(y, cj) + 2 · dist(x, x′).

So, this gives us dist(y, cj) < dist(x, x′) as desired.

5 Certified Algorithms

As mentioned above, a stronger goal that is achievable for some problems is to have a “γ-certified”
algorithm. This algorithm, given any instance I, produces a γ-perturbation I ′ of I and a solution

3



s′ such that s′ is optimal for I ′. If instance I happens to be γ-perturbation-resilient, then s′ will be
optimal for I too. The specific bounds achievable for certified algorithms will generally be worse
than for non-certified, though of course the meaning of the bound is stronger.

Here is a result from [BW17,MM20b], for the k-median objective. I will just give the algorithm
and the result, but not the proof. See [MM20a] for a detailed proof. For this algorithm, think of ρ
as a small positive integer. The running time will be exponential in ρ.

ρ-local search

1. Start with an arbitrary subset S of k points in {x1, ..., xn} and calculate cost(S), the k-median
cost of using S as the k cluster centers.

2. If we can reduce cost(S) by swapping up to ρ of the points in S with other points in {x1, ..., xn},
then do so. Repeat until at a local optimum.

Theorem 1. The ρ-local search algorithm is (3 +O(1/ρ))-certified.

6 Approximation-Stability

Suppose I gave you a dataset to cluster, and I said that this dataset has the property that it’s
enough to get a 1.25 approximation to the k-median problem in order to cluster all but some ϵ
fraction of the points correctly (say there is some ground-truth, like clustering images of people by
who is in them). You might then read up that it’s NP-hard to approximate k-median to better
than 1 + 1/e which is greater than 1.25, and say that this is not a very useful property. But, it
turns out that under this assumption, you can efficiently find a clustering that clusters all but an
O(ϵ) fraction of points correctly, without solving that approximation problem. In other words, the
property gives you structure that allows you to cluster directly. (And if you also have all clusters
being large, then the property actually does allow you to get a 1.25-approximation quickly; in other
words, those instances aren’t the hard ones). And you can replace 1.25 with any constant greater
than 1 (but as the constant gets smaller, the hidden term in the O() gets larger). This is the
notion of approximation stability. We won’t discuss approximation-stability further but for more
information, see [BBG09, B20].

References and Additional Resources

• [AMM17] H. Angelidakis, K. Makarychev, and Y. Makarychev, “Algorithms for Stable and
Perturbation-Resilient Problems,” STOC 2017. https://home.ttic.edu/~yury/papers/

bwca.pdf

• [ABS12] P. Awasthi, Pranjal, A. Blum, and O. Sheffet, “Center-Based Clustering Under
Perturbation Stability,” Information Processing Letters, 112(1-2), 49–54, 2012. https://

home.ttic.edu/~avrim/Papers/clustering-IPL.pdf

4

https://home.ttic.edu/~yury/papers/bwca.pdf
https://home.ttic.edu/~yury/papers/bwca.pdf
https://home.ttic.edu/~avrim/Papers/clustering-IPL.pdf
https://home.ttic.edu/~avrim/Papers/clustering-IPL.pdf


• [BBG90] M.-F. Balcan, A. Blum, and A Gupta, “Approximate Clustering Without the Ap-
proximation,” SODA 2009. Full version in JACM 2013. https://dl.acm.org/doi/pdf/10.
1145/2450142.2450144

• [BL16] M.-F. Balcan and Y. Liang, “Clustering Under Perturbation Resilience,” SIAM Jour-
nal on Computing, 45(1), 102–155, 2016.

• [BW17] M.-F. Balcan and C. White, “Clustering Under Local Stability: Bridging the Gap
Between Worst-Case and Beyond Worst-Case Analysis.” 2017. https://arxiv.org/abs/

1705.07157

• [B20] A. Blum, “Approximation Stability and Proxy Objectives”, Chapter 6 in Beyond Worst-
Case Analysis. https://home.ttic.edu/~avrim/Papers/Chapter_6.pdf

• [MM20a] K. Makarychev and Y. Makarychev, “Perturbation Resilience,” Chapter 5 in Beyond
Worst-Case Analysis. https://home.ttic.edu/~yury/papers/bwca.pdf

• [MM20b] K. Makarychev and Y. Makarychev, “Certified Algorithms: Worst-Case Analysis
and Beyond,” ITCS 2020. https://par.nsf.gov/servlets/purl/10185956

5

https://dl.acm.org/doi/pdf/10.1145/2450142.2450144
https://dl.acm.org/doi/pdf/10.1145/2450142.2450144
https://arxiv.org/abs/1705.07157
https://arxiv.org/abs/1705.07157
https://home.ttic.edu/~avrim/Papers/Chapter_6.pdf
https://home.ttic.edu/~yury/papers/bwca.pdf
https://par.nsf.gov/servlets/purl/10185956

	Structural approaches to BWCA
	Perturbation-Resilience
	Case study: Center-based k-clustering
	Efficient k-clustering of instances satisfying 3-center-proximity
	Certified Algorithms
	Approximation-Stability

