TTIC 31290: Machine Learning for Algorithm Design (Fall 2025)
Avrim Blum and Dravyansh Sharma

Lecture 2: 10/02/25 Lecturer: Avrim Blum

Outline for today

Fixed Parameter Tractability

Case study: Vertex Cover

e Average-case Analysis

Case study: Graph coloring

Today we are continuing our discussion of classic theoretical approaches for dealing with NP-
hardness, focusing on Fixed parameter tractability and average-case analysis.

1 Fixed Parameter Tractability

Last time we looked at approximation algorithms. But what if you really want the optimal solution
for some NP-hard problem. We know we can’t expect to optimally solve arbitrary instances in time
polynomial in the input size, but maybe we can identify a relevant parameter “k” such that we can
achieve running time f(k) - poly(n) for some function f. If we can do that, we say the problem is
Fixzed-parameter tractable, in that parameter k.

One nice problem where you can do this is vertex cover, where k is the size of the optimal cover.

Theorem 1. There is an algorithm for finding a minimum vertex cover of an n-node graph that
runs in time O(2F - poly(n)) where k is the size of the minimum vertex cover.

Algorithm VC-FPT

Input: graph G, value k (we’ll try this with £ = 0,1, 2,3, ... until we solve it)

0. If £ = 0 then if G has no edges return {}, else return “fail”.

1. Pick an arbitrary edge (u,v).

2. Let G, be the graph G with vertex u and its incident edges removed.
(a) Call VC-FPT(G,,k—1).
(b) If this returns a cover S of size k — 1, return S U {u}.

3. Let G, be the graph GG with vertex v and its incident edges removed.
(a) Call VC-FPT(Gy,k —1).



(b) If this returns a cover S of size k — 1, return S U {v}.

4. If we reach here, then return “fail”.

Proof. (Theorem |(1]) There are two things to analyze: running time and correctness. The easiest is
running time: given input value k, we make two recursive calls with value k — 1, halting at k£ = 0.
So we immediately get the O(2% - poly(n)). Now, what about correctness? For this, let’s argue by
induction. The base case k = 0 is trivial. For the general case, consider some Vertex Cover C of
size k. We know C must contain at least one of u or v. If C' contains u, then C'\ {u} is a Vertex
Cover of G, of size k — 1, so Step 2(a) will return a cover of G,, of size k — 1 by induction, and
so S U {u} is a cover of G of size k. If C doesn’t contain u then it must contain v, in which case
C'\ {v} is a Vertex Cover of Gy, of size k — 1, so by induction Step 3 will return an optimal vertex
cover. O

2 Average-case analysis

If we can’t solve our problem in polynomial time in the worst case, then another classic approach
is to posit some simple probability distribution over instances, and ask whether we can get an
algorithm that works well with high probability (or in expectation) over that distribution. This is
called “average case analysis”. For example, if we have a graph problem, and we use the G(n,1/2)
random graph model, which says that each edge is in the graph independently with probability
1/2, then this is really doing an average case out of all graphs on n vertices.

An interesting case-study to look at for average-case analysis is Graph k-coloring. Given a graph
G and an integer k, the goal is to assign each vertex of GG to one of k colors so that no two adjacent
vertices get the same color (or output “not possible” if it’s not possible). This problem is easy to
solve for k = 2 (asking “is the graph bipartite”) and NP-hard for any k > 3. Famously, any planar
graph is 4-colorable (and there are efficient algorithms for 4-coloring planar graphs).

Unfortunately, the best approximation factors known for this problem are quite high. E.g., currently
the best approximation known for coloring 3-colorable graphs is n%197 colors, and it gets worse for
k > 3. On the hardness side, it’s known to be NP-hard to achieve a 2k — 1 coloring. But what
about random k-colorable graphs?

2.1 Random k-colorable graph model G(n,p, k)

Let k be a given constant (like 3) and let p € [0,1]. Here is one reasonable model for a random
k-colorable n-vertex graph:

1. Assign each vertex randomly (iid) to one of k color classes.

2. For each pair of vertices (u,v) from different color classes, add the edge (u,v) into the graph
with probability p.

It turns out we can easily k-color graphs from G(n,p, k) with high probability, and in fact we can
recover the hidden coloring (think of it as a hidden “clustering” where edges represent noticeable
significant differences) for any constant value of p (and even very sub-constant).



Simple k-coloring algorithm

1. For each pair of vertices u, v, calculate the number n,,, of neighbors that they have in common.

2. Sort the numbers n,,,. Create a brand-new “similarity graph” by connecting those pairs (u, v)
whose values n,, is highest until there are k components to this graph. Output them as the
k color classes.

Analysis: If u and v are in the same color class, then the expected number of neighbors they have
in common is (n — 2)(%2)p?. That’s because there are n — 2 other nodes, each of which has a
(k —1)/k chance of being from a different color, and then conditioned on it being a different color,
there is a p? chance it is a neighbor of both « and v. On the other hand, if v and v are in different
color classes, then the expected number of neighbors they have in common is (n— 2)(%)1)2. Notice
that “k —1” has changed to “k — 2” because the node must have color different from both v and v.
So, the expected number of neighbors in common differs by a factor of % E.g., for 3-colorable

graphs, the expected number of neighbors in common differs by a factor of 2.

Now, to finish, we just need to apply a tail inequality to say that so long as the expectations are
large enough, with high probability every pair of nodes will share a number of neighbors in common
that’s close to their expectation. This will then allow us to partition all the nodes by color.

To do this, there are several tail inequalities we can use. Here are some that I generally find most
convenient, called Chernoff bounds and Hoeffding bounds.

Chernoff and Hoeffding bounds

Let X1,...,X, be a sequence of n independent {0, 1} random variables with Pr[X; = 1] =
necessarily the same. Let S be the sum of the RVs, and let © = E[S]. Then, for 0 < § <
following inequalities hold.

Additive (Hoeffding) bounds:

o Pr[S >+ on] < e 2%,

o Pr[S < p—dn] < e 2%
Multiplicative (Chernoff) bounds:

o Pr[S > (14 6)u] < e 13,

o Pr[S < (1—8)pu] < e 0°r/2

Also, for any k > 1, we get:

o Pr[S > kul < (i—?)“.

To finish the argument, we can use the multiplicative (Chernoff) bounds with 6 = ﬁ so that

(k—2)(1+90) < (k—1)(1—9), giving us a separation. We just need the failure probability to be
small enough so that with high probability, no pairs deviate by more than their allowed 1+49. This
just requires that the expectation u be asymptotically larger than k%log(n). So, p just has to be

asymptotically larger than k- y/log(n)/n. O



3 Additional Resources

Fixed-Parameter Tractability:

e Jason Li’s lecture notes at CMU: https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/
class/15850-f18/www/scribes/lecturel2.pdf

e David Karger’s lecture notes at MIT:

https://ocw.mit.edu/courses/6-854j-advanced-algorithms-fall-2005/d8a8d8a91186a724e9d19875657238b8_
lecturel4d.pdf

Average-case analysis:

e Wojciech Szpankowski’s book on average-case analysis on sequences: https://www.cs.purdue.
edu/homes/spa/courses/pgl7/mybook. pdf


https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-f18/www/scribes/lecture12.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15850-f18/www/scribes/lecture12.pdf
https://ocw.mit.edu/courses/6-854j-advanced-algorithms-fall-2005/d8a8d8a91186a724e9d19875657288b8_lecture14.pdf
https://ocw.mit.edu/courses/6-854j-advanced-algorithms-fall-2005/d8a8d8a91186a724e9d19875657288b8_lecture14.pdf
https://www.cs.purdue.edu/homes/spa/courses/pg17/mybook.pdf
https://www.cs.purdue.edu/homes/spa/courses/pg17/mybook.pdf

	Fixed Parameter Tractability
	Average-case analysis
	Random k-colorable graph model G(n,p,k)

	Additional Resources

