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Outline for today

• Minimum-Weight Perfect Matching

• Learning Predictions

• Online Learning

1 Minimum-Weight Perfect Matching

Let G = (V,E) be an undirected bipartite graph with |V | = n even. Each edge e ∈ E has a weight
(cost) ce ∈ [0, C]. A perfect matching M ⊆ E is a set of n/2 edges such that every vertex of V is
incident to exactly one edge of M .

Definition 1 (Minimum-Weight Perfect Matching). Given weights c ∈ RE, the minimum-weight
perfect matching problem is

min
M∈M

c(M) :=
∑
e∈M

ce,

where M denotes the family of perfect matchings of G.

A standard linear programming formulation admits a dual with one dual variable per vertex (poten-
tials). For our learning discussion we will focus on learning useful duals (potentials) as warm-starts.

1.1 Dual potentials

Write the (standard) LP relaxation for matching using edge-incidence constraints:

min
∑
e∈E

cexe

s.t.
∑
e∋v

xe = 1 ∀v ∈ V,

xe ≥ 0 ∀e ∈ E.

The dual variables are potentials y ∈ RV

max
∑
v∈V

yv

s.t. yu + yv ≤ cuv, ∀(u, v) ∈ E.
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Classical algorithms (e.g. the Hungarian algorithm) start with a feasible dual solution (say set
all yi = 0 for one side of the bipartite graph, and the maximum feasible weight for the vertices
on the other side) and adjust the dual solution until an optimal solution y∗ = y∗(c) is found. If
we have a good prediction ŷ for the optimal solution y∗ for the dual problem, we can achieve
a speed up that depends on ∥ŷ − y∗∥1 (Dinitz et al. show that one can achieve a running time
of Õ(|E|

√
n · min{∥ŷ − y∗∥1,

√
n}), achieving a graceful degradation in the performance with the

quality of prediction).

2 Learning predictions for duals

Assume there is an underlying distribution D over cost vectors c ∈ [0, C]E . We receive m indepen-
dent samples c(1), . . . , c(m) ∼ D. The learner outputs a learned dual ŷ ∈ RV .

Since the running time and the quality of prediction depend on ∥ŷ − y∗∥1, our goal is to minimize
expected error in ℓ1 between predicted and optimal duals,

L(ŷ) = Ec∼D
[
∥ŷ − y∗(c)∥1

]
.

Define the hypothesis class
H = gy(c) = ∥y − y∗∥1 : y ∈ Rn.

Because y∗ depends on c, the statistical complexity is controlled by the simpler class

Hn := fy(x) = ∥y − x∥1 : y ∈ Rn,

where x ranges over possible optimal dual vectors.

Theorem 1 (Pseudo-dimension bound).

Pdim(Hn) = O(n log n).

Consequently, standard uniform convergence yields a sample complexity of learning ŷ that scales as
Õ
(
(n · C)2n log n/ε2

)
, where C is a bound on the cost on any edge.

Proof. The ℓ1 distance decomposes as

fy(x) =

n∑
i=1

|yi − xi|.

Dinitz et al. use a careful counting argument for the number of cells induced by hyperplanes to
give a bound on the pseudo-dimension from first principles. Using the tools we have learned in the
course, we can give a much simpler proof.

Indeed, we will analyze the structure of the dual function f∗
x(y). If we consider the pieces induced by

n hyperplanes yi−xi = 0, the function value is linear in y within any induced piece. Thus, the dual
function class is (F ,G, n) decomposable where the piece functions in F are linear functions and the
boundary functions in G are linear thresholds. Together, this implies the stated pseudo-dimension
bound.
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3 Online learning and improved sample complexity

Turns out that there is additional structure in the loss function that allows us to both do online
learning and improve the piecewise-structure based sample complexity bounds above.

3.1 Online Convex Optimization

We consider the standard Online Convex Optimization (OCO) setting. Let K ⊆ Rd be a convex
set of diameter D, meaning

∥x− y∥ ≤ D ∀x, y ∈ K.

At each round t = 1, . . . , T :

• the learner chooses xt ∈ K,

• the adversary reveals a convex loss function ft : K → R,

• the learner incurs loss ft(xt).

We assume that each loss ft is L-Lipschitz with respect to the Euclidean norm:

∥∇ft(x)∥ ≤ L ∀x ∈ K, t = 1, . . . , T.

Online Gradient Descent. Online Gradient Descent (OGD) performs the update

yt+1 = xt − η∇ft(xt), xt+1 = ΠK(yt+1),

where ΠK denotes Euclidean projection onto K.

Theorem 2 (Regret of Online Gradient Descent). For any comparator x⋆ ∈ K, the regret of Online
Gradient Descent satisfies

RT (x
⋆) :=

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
⋆) ≤ D2

2η
+

ηL2T

2
.

In particular, choosing

η =
D

L
√
T

gives the bound
RT (x

⋆) ≤ DL
√
T .

Proof. By convexity of ft we have

ft(xt)− ft(x
⋆) ≤ ⟨∇ft(xt), xt − x⋆⟩.

Using the OGD update and Pythagorean theorem for Euclidean projections,

∥xt+1 − x⋆∥2 ≤ ∥xt − η∇ft(xt)− x⋆∥2.
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Expanding the right-hand side gives

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 − 2η⟨∇ft(xt), xt − x⋆⟩+ η2∥∇ft(xt)∥2.

Rearranging and using ∥∇ft(xt)∥ ≤ L yields

⟨∇ft(xt), xt − x⋆⟩ ≤ ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

2η
+

ηL2

2
.

Summing over t = 1 to T , telescoping the norms, and using ∥x1 − x⋆∥ ≤ D and ∥xT+1 − x⋆∥2 ≥ 0,
we obtain

T∑
t=1

⟨∇ft(xt), xt − x⋆⟩ ≤ D2

2η
+

ηL2T

2
.

Combining with the convexity inequality gives the claimed regret bound.

3.2 Online learning for duals

We notice that the loss function f∗
x(y) is convex in y and

√
n-Lipschitz. This allows us to apply

Theorem 2 to get the following result.

Theorem 3. Let c(1), . . . , c(T ) ∈ [0, C]E be a sequence of cost vectors. Then OGD with step size
η = C√

T
gives online predictions for duals y1, . . . , yT with regret

T∑
t=1

∥yt − y∗(c(t))∥1 − min
y∈[−C,C]n

T∑
t=1

∥y − y∗(c(t))∥1 ≤ Cn
√
T .

Proof. It is sufficient to show that f∗
x(y) is convex,

√
n-Lipschitz and C

√
n-bounded, and apply

Theorem 2.

By online-to-batch conversion, this implies that we can PAC-learn ŷ with a smaller sample com-
plexity Õ

(
(n · C)2/ε2

)
.
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