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Outline for today

e Minimum-Weight Perfect Matching
e Learning Predictions

e Online Learning

1 Minimum-Weight Perfect Matching

Let G = (V, E) be an undirected bipartite graph with |V| = n even. Each edge e € E has a weight
(cost) ce € [0,C]. A perfect matching M C E is a set of n/2 edges such that every vertex of V' is
incident to exactly one edge of M.

Definition 1 (Minimum-Weight Perfect Matching). Given weights ¢ € R¥, the minimum-weight
perfect matching problem is

min c¢(M) := Z Ces

MeM
ecM

where M denotes the family of perfect matchings of G.

A standard linear programming formulation admits a dual with one dual variable per vertex (poten-
tials). For our learning discussion we will focus on learning useful duals (potentials) as warm-starts.

1.1 Dual potentials

Write the (standard) LP relaxation for matching using edge-incidence constraints:

min E CeZe

eclk

s.t. erzl Yv eV,
esv
ze >0 VeeFE.

The dual variables are potentials y € RV

max Z Yo

veV
S.t. Yu + Yo < Cuv, V(u,v) € E.



Classical algorithms (e.g. the Hungarian algorithm) start with a feasible dual solution (say set
all y; = 0 for one side of the bipartite graph, and the maximum feasible weight for the vertices
on the other side) and adjust the dual solution until an optimal solution y* = y*(c¢) is found. If
we have a good prediction g for the optimal solution y* for the dual problem, we can achieve
a speed up that depends on ||§ — y*||1 (Dinitz et al. show that one can achieve a running time
of O(|E|\/n - min{||§ — y*||1,/n}), achieving a graceful degradation in the performance with the
quality of prediction).

2 Learning predictions for duals

Assume there is an underlying distribution D over cost vectors ¢ € [0, C]¥. We receive m indepen-
dent samples ¢V, ..., ™) ~ D. The learner outputs a learned dual § € RV

Since the running time and the quality of prediction depend on ||§ — y*||1, our goal is to minimize
expected error in £; between predicted and optimal duals,

L(§) = Eevn [[19 =y (c) 1]
Define the hypothesis class
H=gylc)=lly—y"l1:yeR™
Because y* depends on ¢, the statistical complexity is controlled by the simpler class
Hy = fy(z) = |ly — afl1 : y € R,
where = ranges over possible optimal dual vectors.

Theorem 1 (Pseudo-dimension bound).
Pdim(H,) = O(nlogn).

Consequently, standard uniform convergence yields a sample complexity of learning § that scales as
O((n -C)?nlog n/52), where C' is a bound on the cost on any edge.

Proof. The {1 distance decomposes as

fy@) = lyi — ail.
=1

Dinitz et al. use a careful counting argument for the number of cells induced by hyperplanes to
give a bound on the pseudo-dimension from first principles. Using the tools we have learned in the
course, we can give a much simpler proof.

Indeed, we will analyze the structure of the dual function f(y). If we consider the pieces induced by
n hyperplanes y; — z; = 0, the function value is linear in y within any induced piece. Thus, the dual
function class is (F, G, n) decomposable where the piece functions in F are linear functions and the
boundary functions in G are linear thresholds. Together, this implies the stated pseudo-dimension
bound. O



3 Online learning and improved sample complexity

Turns out that there is additional structure in the loss function that allows us to both do online
learning and improve the piecewise-structure based sample complexity bounds above.

3.1 Online Convex Optimization

We consider the standard Online Convex Optimization (OCO) setting. Let X C R? be a convex
set of diameter D, meaning
le—yl<D Vaoyek.

At eachround t=1,...,T":
e the learner chooses x; € IC,
e the adversary reveals a convex loss function f; : K — R,

e the learner incurs loss fi(x).

We assume that each loss f; is L-Lipschitz with respect to the Euclidean norm:

IVfi(x)| <L Vzxek, t=1,...,T.

Online Gradient Descent. Online Gradient Descent (OGD) performs the update
yerr =z =V fi(ze),  wn = e(ye),
where Il denotes Euclidean projection onto /.

Theorem 2 (Regret of Online Gradient Descent). For any comparator z* € K, the regret of Online
Gradient Descent satisfies

D? LT
—+
2n 2

T T
Rp(z*) := > filz) = Y fila™) <
=1 =1

In particular, choosing
D

"= IVT

gives the bound
Ry(z*) < DLVT.

Proof. By convexity of f; we have

fe(xe) = fe(a™) <V fe(me), ¢ — 7).
Using the OGD update and Pythagorean theorem for Euclidean projections,

@1 — 2¥]|? < [lze — 0V fo(ze) — 2%



Expanding the right-hand side gives
41 = 2P < oo — 2|1 = 20(V fewe), 2 — 2*) + 02|V filze) |
Rearranging and using ||V fi(x¢)|| < L yields

v — 2|2

— Nz —l'*2 L2
s =],

(Vfilan),a— ) < 5 &

Summing over t = 1 to T, telescoping the norms, and using ||z1 — z*|| < D and ||z711 — 2*[|*> > 0,
we obtain

D? LT
vat xt) fUt—l’)Sf—l-n
2n 2
t=1
Combining with the convexity inequality gives the claimed regret bound. O

3.2 Online learning for duals

We notice that the loss function f(y) is convex in y and /n-Lipschitz. This allows us to apply
Theorem [2] to get the following result.

Theorem 3. Let ¢V, ... 1) e [0,C1F be a sequence of cost vectors. Then OGD with step size
n= % gives online predictions for duals y1, .. .,yr with regret

ZHyt Hl— mln Z\ly y ()l < CnVT.

Proof. Tt is sufficient to show that f’(y) is convex, /n-Lipschitz and Cy/n-bounded, and apply
Theorem [2 O

By online-to-batch conversion, this implies that we can PAC-learn ¢ with a smaller sample com-
plexity O((n - C)?/e?).
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