

TTIC 31290 - Machine Learning for Algorithm Design (Fall 2025)

Avrim Blum and Dravyansh Sharma

Lecturer: Avrim Blum

Lecture 14:
ML for Mechanism Design
and
The Adversarial Multi-armed Bandit Problem

ML for Mechanism Design

- ◆ In Lecture 11, we introduced the notion of incentive-compatible mechanisms.
- ◆ And we analyzed the sample complexity for learning *reserve prices* to maximize revenue in a Vickrey auction.
- ◆ Today, we will examine some other selling mechanisms.
- ◆ Material from: Balcan MF, Sandholm T, Vitercik E. “A general theory of sample complexity for multi-item profit maximization.” EC-2018, Operations Research 2025.

Posted-Price Mechanisms

- ◆ Selling n_{items} different items.
- ◆ Mechanism assigns each item i a price p_i .
- ◆ Buyers have arbitrary valuation functions over bundles $B \subseteq \{1, \dots, n_{items}\}$, and purchase the bundle of highest $\text{value}(B) - \text{price}(B)$.
- ◆ Assume some distribution D over buyers. How many samples do we need so that pricing that maximizes revenue on the sample is near-optimal over D ?
- ◆ Analyze the pseudo-dimension.

Pseudo-dimension of posted price mechanisms

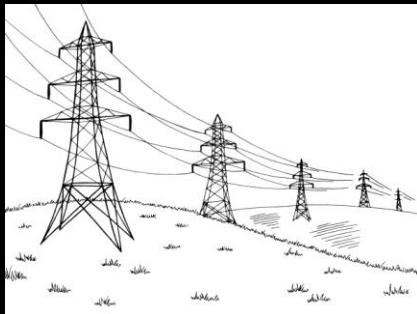
- ◆ Selling n_{items} different items.
- ◆ Mechanism assigns each item i a price p_i .

Dual space has dimension $d = n_{items}$.

- ◆ For any given buyer, preference of bundle B_1 vs B_2 determined by $\text{value}(B_1) - \text{price}(B_1)$ vs $\text{value}(B_2) - \text{price}(B_2)$.
- ◆ So, at most $k = \binom{2^{n_{items}}}{2}$ linear boundary functions.
- ◆ And within each region, revenue is linear.
- ◆ Gives a pseudo-dim of $O(n_{items} \cdot n_{items}) = O(n_{items}^2)$.

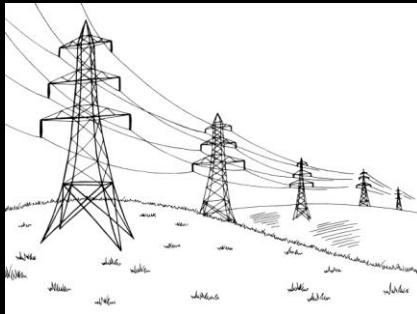
Two-part tariffs

- ◆ Single item, but multiple copies. (Assume any given buyer wants at most K).
- ◆ Seller sets an upfront fee p_0 and a per-unit fee p_1 . Cost to buy k units is $p_0 + kp_1$.
- ◆ Examples: Costco, utilities, some amusement parks.



Menus of two-part tariffs

- ◆ Have L different two-part tariffs $(p_0^1, p_1^1), (p_0^2, p_1^2), \dots (p_0^L, p_1^L)$
- ◆ Buyer picks a tariff i and a number $k \leq K$ of units to buy, and pays $p_0^i + kp_1^i$.
- ◆ What can we say about the pseudo-dimension now?



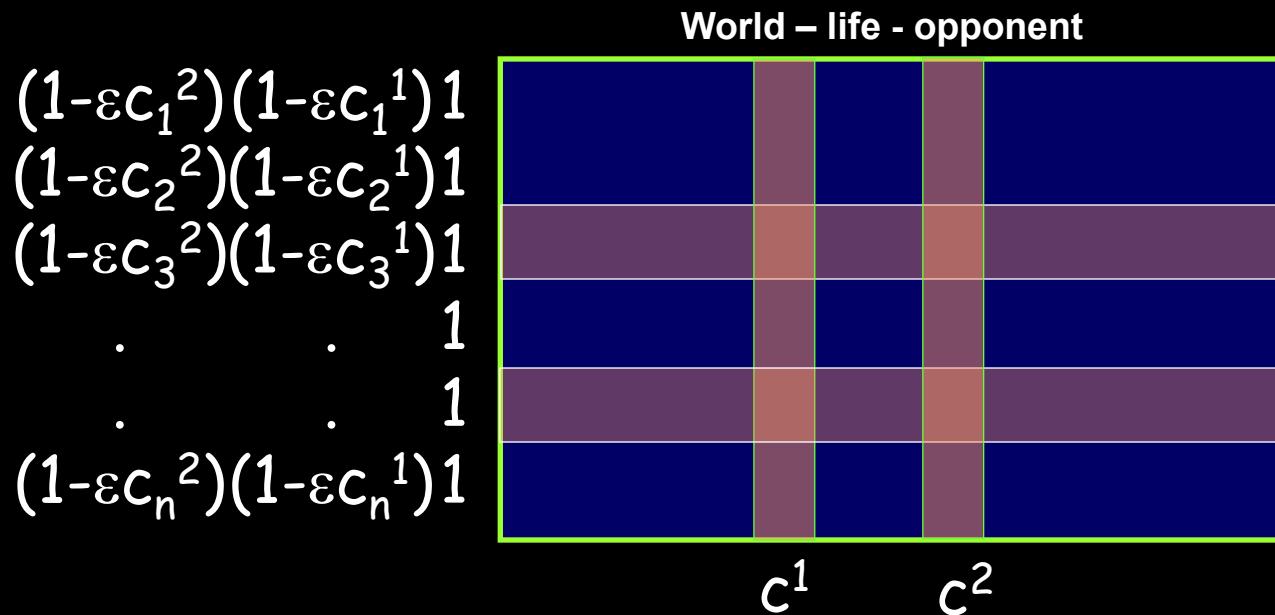
Pseudo-dimension of menus of two-part tariffs

- ◆ Have L different two-part tariffs $(p_0^1, p_1^1), (p_0^2, p_1^2), \dots (p_0^L, p_1^L)$
- ◆ Buyer picks a tariff i and a number $k \leq K$ of units to buy, and pays $p_0^i + kp_1^i$.
- ◆ Dual space has dimension $d = 2L$.
- ◆ What does the boundary look like between choices (i_1, k_1) and (i_2, k_2) ? **Linear:** $p_0^{i_1} + k_1 p_1^{i_1} = p_0^{i_2} + k_2 p_1^{i_2}$
- ◆ At most $O(L^2 K^2)$ linear boundary functions, and revenue is linear within each region.
- ◆ So, pseudo-dimension is $O(L \log(KL))$.
- ◆ See [Balcan-Sandholm-Vitercik] for more.

Now, switching to online learning

The Adversarial Multi-Armed Bandit Problem

- In our previous discussion of online learning, we assumed “full feedback”: we see how well we would have done had we made a different choice.



The Adversarial Multi-Armed Bandit Problem

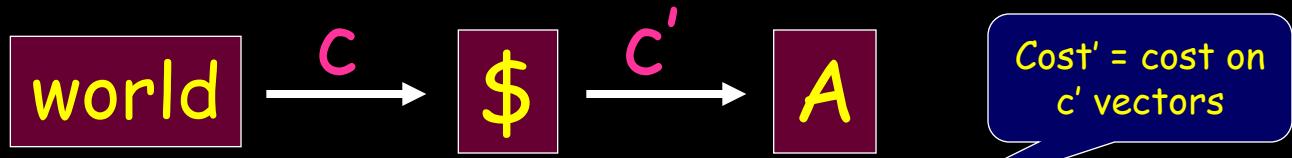
- ◆ In our previous discussion of online learning, we assumed “full feedback”: we see how well we would have done had we made a different choice.
- ◆ But what if we only get feedback for the action we choose?
- ◆ This is called the “multi-armed bandit” setting.
- ◆ But first, a quick discussion of $[0,1]$ vs $\{0,1\}$ costs for RWM algorithm

$[0,1]$ costs vs $\{0,1\}$ costs.

We analyzed Randomized Wtd Majority for case that all costs in $\{0,1\}$ (and slightly hand-waved extension to $[0,1]$)

Here is an alternative simple way to extend to $[0,1]$.

- Given cost vector c , view c_i as bias of coin. Flip to create boolean vector c' , s.t. $E[c'_i] = c_i$. Feed c' to alg A .



- For any sequence of vectors c' , we have:
 - $E_A[\text{cost}'(A)] \leq \min_i \text{cost}'(i) + [\text{regret term}]$
- So, $E_{\$}[E_A[\text{cost}'(A)]] \leq E_{\$}[\min_i \text{cost}'(i)] + [\text{regret term}]$
- LHS is $E_A[\text{cost}(A)]$. (since A picks weights before seeing costs)
- RHS $\leq \min_i E_{\$}[\text{cost}'(i)] + [\text{r.t.}] = \min_i [\text{cost}(i)] + [\text{r.t.}]$

In other words, costs between 0 and 1 just make the problem easier...

Experts → Bandit setting

- ◆ In the bandit setting, only get feedback for the action we choose. Still want to compete with best action in hindsight.
- ◆ [ACFS02] give algorithm with cumulative regret $O((TN \log N)^{1/2})$. [average regret $O(((N \log N)/T)^{1/2})$.]
- ◆ Will do a somewhat weaker version of their analysis (same algorithm but not as tight a bound).
- ◆ Talk about it in the context of online pricing...

Online pricing

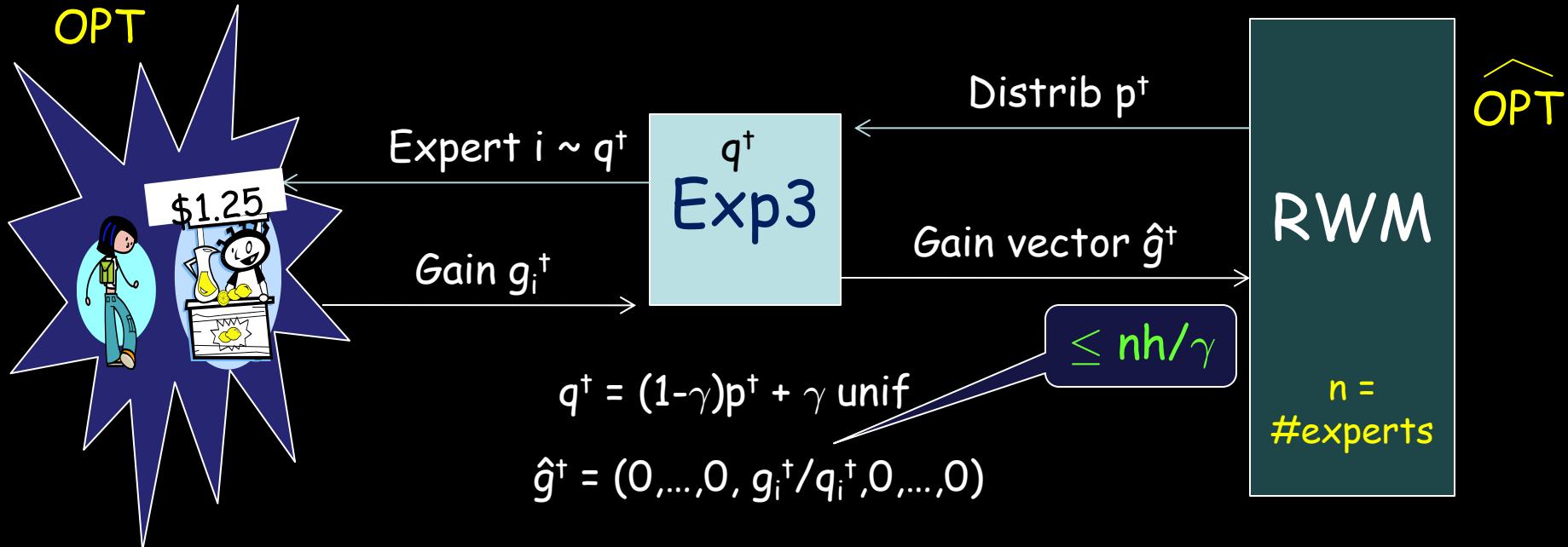
- Say you are selling lemonade (or bottles of water outside a football stadium).
- For $t=1,2,\dots,T$
 - Seller sets price p^t
 - Buyer arrives with valuation v^t
 - If $v^t \geq p^t$, buyer purchases and pays p^t , else doesn't.
 - Repeat.
- Assume all valuations $\leq h$.
- Goal: do nearly as well as best fixed price in hindsight.
- If v^t revealed, run RWM. $E[\text{gain}] \geq \text{OPT}(1-\epsilon) - O(\epsilon^{-1} h \log n)$.

View each possible price as a different row/expert

Multi-armed bandit problem

Exponential Weights for Exploration and Exploitation (exp³)

[Auer, Cesa-Bianchi, Freund, Schapire]

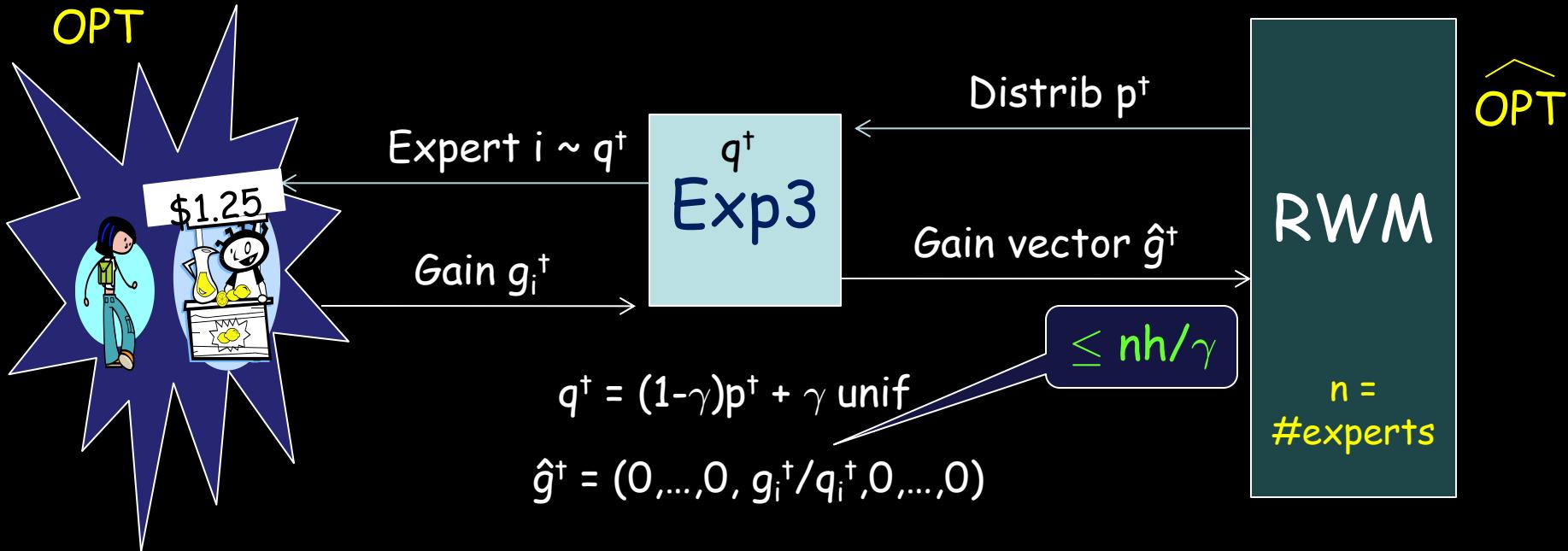


1. RWM believes gain is: $p^\dagger \cdot \hat{g}^\dagger = p_i^\dagger(g_i^\dagger/q_i^\dagger) \equiv g_{\text{RWM}}^\dagger$
2. $\sum_t g_{\text{RWM}}^\dagger \geq \widehat{OPT} (1-\epsilon) - O(\epsilon^{-1} nh/\gamma \log n)$
3. Actual gain is: $g_i^\dagger = g_{\text{RWM}}^\dagger (q_i^\dagger/p_i^\dagger) \geq g_{\text{RWM}}^\dagger(1-\gamma)$
4. $E[\widehat{OPT}] \geq OPT$. Because $E[\hat{g}_j^\dagger] = (1-q_j^\dagger)0 + q_j^\dagger(g_j^\dagger/q_j^\dagger) = g_j^\dagger$, so $E[\max_j [\sum_t \hat{g}_j^\dagger]] \geq \max_j [E[\sum_t \hat{g}_j^\dagger]] = OPT$.

Multi-armed bandit problem

Exponential Weights for Exploration and Exploitation (exp³)

[Auer, Cesa-Bianchi, Freund, Schapire]



Conclusion ($\gamma = \epsilon$):

$$E[\text{Exp3}] \geq \text{OPT}(1 - \epsilon)^2 - O(\epsilon^{-2} nh \log(n))$$

Balancing would give $O((\text{OPT} nh \log n)^{2/3})$ regret because of ϵ^{-2} . But can reduce to ϵ^{-1} and $O((\text{OPT} nh \log n)^{1/2})$ with better analysis.

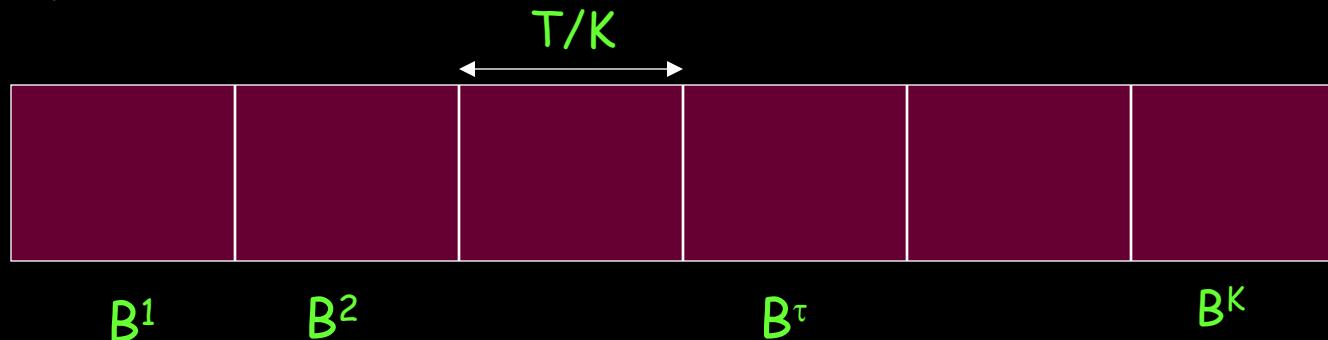
Another reduction (not as good but more generic)

Given: algorithm A for full-info setting with regret $\leq R(T)$.

Goal: use in black-box manner for bandit problem.

Preliminaries:

- First, suppose we break our T time steps into K blocks of size T/K each.



- Use same distrib throughout block and update based on average cost vector c^τ for block τ .
Because really paying $T/K c^\tau$ per block
- Then, will get regret $\leq R(K) T/K$.
- What if we instead update on cost vector $c' \in [0,1]^N$ that's a random variable whose expectation is correct?

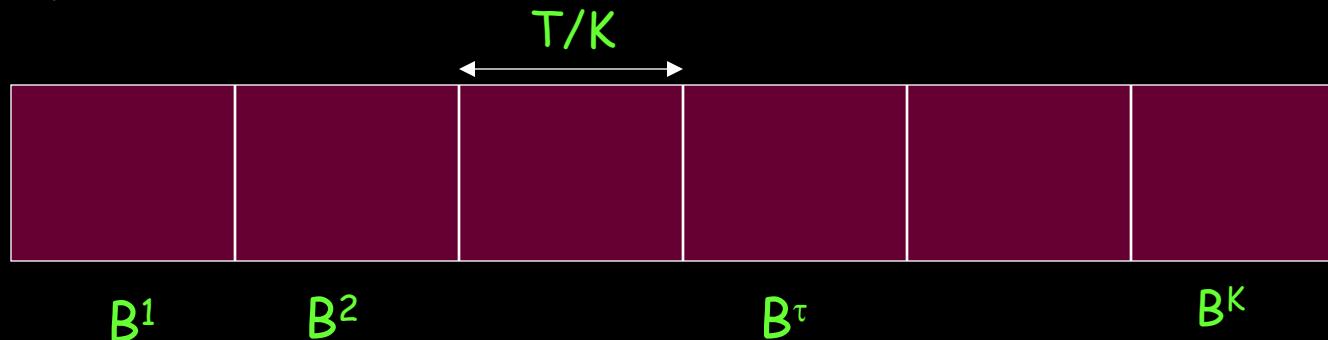
Another reduction (not as good but more generic)

Given: algorithm A for full-info setting with regret $\leq R(T)$.

Goal: use in black-box manner for bandit problem.

Preliminaries:

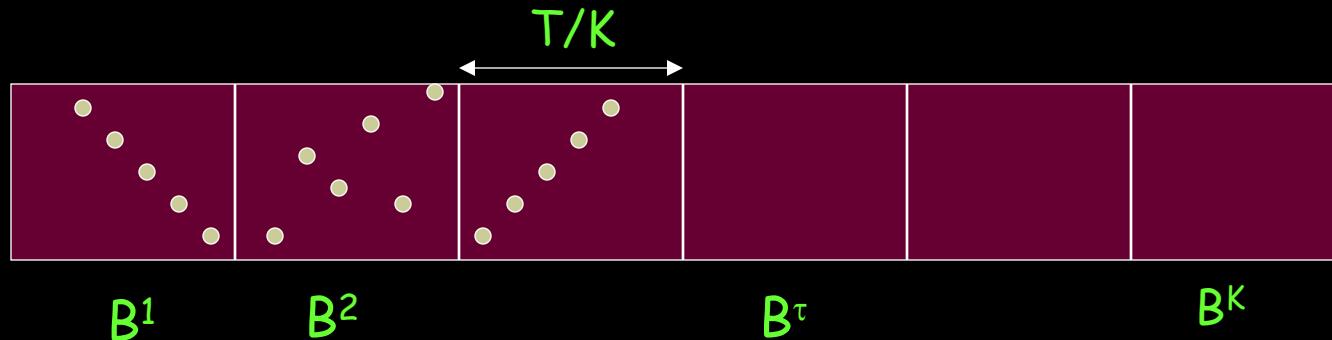
- First, suppose we break our T time steps into K blocks of size T/K each.



- Do at least as well by $\{0,1\} \rightarrow [0,1]$ argument. Still get regret bound $R(K) \cdot T/K$.
- How does this help us for bandit problem?
- What if we instead update on cost vector $c' \in [0,1]^N$ that's a random variable whose expectation is correct?

Experts \rightarrow Bandit setting

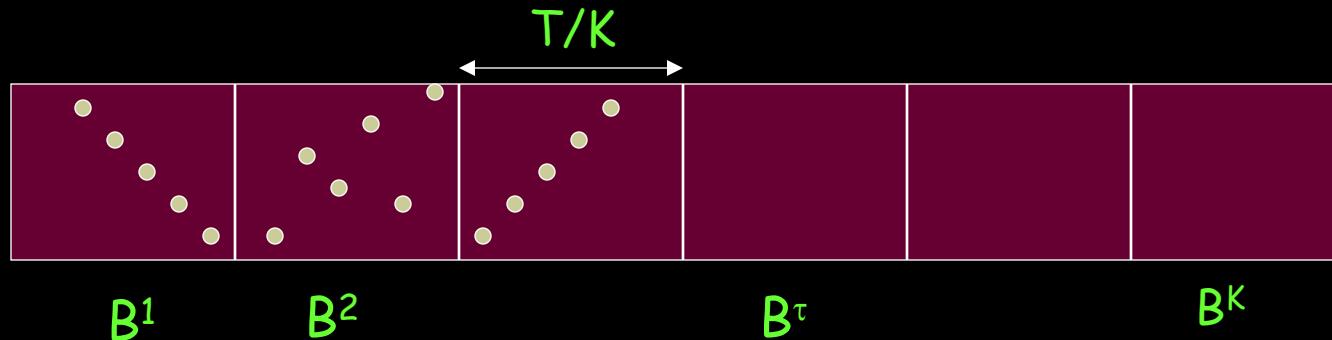
- ◆ For bandit problem, for each action, pick random time step in each block to try it as “exploration”.
- ◆ Define c' only wrt these exploration steps.
- ◆ Just have to pay an extra at most NK for cost of this exploration.



- ◆ Do at least as well by $\{0,1\} \rightarrow [0,1]$ argument. Still get regret bound $R(K) \leq T/K$.
- ◆ How does this help us for bandit problem?
- ◆ What if we instead update on cost vector $c' \in [0,1]^N$ that's a random variable whose expectation is correct?

Experts \rightarrow Bandit setting

- ◆ For bandit problem, for each action, pick random time step in each block to try it as “exploration”.
- ◆ Define c' only wrt these exploration steps.
- ◆ Just have to pay an extra at most NK for cost of this exploration.



- ◆ Final bound: $R(K) \leq T/K + NK$.
- ◆ Using $K = (T/N)^{2/3}$ and bound from RWM, get cumulative regret bound of $O(T^{2/3}N^{1/3} \log N)$.

Summary

Can apply algorithms for online decision-making even with very limited feedback.

- Application: which way to drive to work, with only feedback about your own paths; online pricing, even if only have buy/no buy feedback.