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ML for Mechanism Design

¢ |In Lecture 11, we introduced the notion of incentive-
compatible mechanisms.

+ And we analyzed the sample complexity for learning
reserve prices to maximize revenue in a Vickrey auction.

+ Today, we will examine some other selling mechanisms.

+ Material from: Balcan MF, Sandholm T, Vitercik E. “A
general theory of sample complexity for multi-item profit
maximization.” EC-2018, Operations Research 2025.



Posted-Price Mechanisms

¢ Selling n, different items.

* Mechanism assigns each item i
a price p;.

¢ Buyers have arbitrary valuation functions over bundles
B € {1, ...,n;;ems}, @and purchase the bundle of highest
value(B) — price(B).

+ Assume some distribution D over buyers. How many
samples do we need so that pricing that maximizes
revenue on the sample is near-optimal over D?

+ Analyze the pseudo-dimension.



Pseudo-dimension of posted
price mechanisms

¢ Selling n, different items.

* Mechanism assigns each item i
a price p;.

Dual space has dimension d = n;pms-

* For any given buyer, preference of bundle B; vs B,
determined by value(B,) — price(B, ) vs value(B,) — price(B,).

Nitems
¢ So,atmost k = (2 ; ) linear boundary functions.

+ And within each region, revenue is linear.

+ Gives a pseudo-dim of 0(Mjrems * Nitems) = O (M o).



Two-part tariffs

+ Single item, but multiple copies. (Assume any given buyer wants
at most K).

+ Seller sets an upfront fee p, and a per-unit fee p;. Cost to
buy k units is py + kp;.

¢+ Examples: Costco, utilities, some amusement parks.




Menus of two-part tariffs

+ Have L different two-part tariffs (pd, p1), (pZ,p?), ... (&, P5)

+ Buyer picks a tariff i and a number k < K of units to buy, and
pays po + kp;.

+ What can we say about the pseudo-dimension now?




Pseudo-dimension of menus of two-part tariffs

+ Have L different two-part tariffs (p}, p1), (v5, p?), ... W5, pH)

+ Buyer picks a tariff i and a number k < K of units to buy, and
pays po + kp;.

¢ Dual space has dimension d = 2L.

* What does the boundary look like between choices
(i1, k1) and (iz, k3)? Linear: pgt + kypyt = p + kopy?

+ At most 0(L?*K?) linear boundary functions, and revenue
IS linear within each region.

¢ S0, pseudo-dimension is O(Llog(KL)).

¢ See [Balcan-Sandholm-Vitercik] for more.



Now, switching to online learning



The Adversarial Multi-Armed Bandit Problem

¢ In our previous discussion of online learning, we
assumed "“full feedback": we see how well we would
have done had we made a different choice.
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The Adversarial Multi-Armed Bandit Problem

¢ In our previous discussion of online learning, we
assumed "“full feedback": we see how well we would
have done had we made a different choice.

+ But what if we only get feedback for the action we
choose?

¢ This is called the "multi-armed bandit" setting.

* But first, a quick discussion of [0,1] vs {0,1} costs for
RWM algorithm



[0,1] costs vs {0,1} costs.

We analyzed Randomized Wtd Majority for case that all
costs in {0,1} (and slightly hand-waved extension to [0,1])

Here is an alternative simple way to extend to [0,1].

+ Given cost vector c, view ¢; as bias of coin. Flip to create
boolean vector ¢, s.t. E[c’]] = ¢;. Feed ¢ to alg A.

(]
C C Cost' = cost on
WOr'Id — $ — A Oc' vec‘roorsO
+ For any sequence of vectors c', we have:

= E, [cost'(A)] < min, cost'(i) + [regret term]
* So, Eg[Ea[cost'(A)]] < Eg[min; cost'(i)] + [regret term]
¢ LHS is E [cost(A)]. (since A picks weights before seeing costs)
* RHS < min; Eg[cost'(i)] + [r.1.] = min;[cost(i)] + [r.1.]

In other words, costs between O and 1 just make the
problem easier...




Experts — Bandit setting

¢

In the bandit setting, only get feedback for the action
we choose. Still want to compete with best action in
hindsight.

[ACFS02] give algorithm with cumulative regret
O( (TN log N)/2). [average regret O( ((N log N)/T)2).]

Will do a somewhat weaker version of their analysis
(same algorithm but not as tight a bound).

Talk about it in the context of online pricing...



- Assume all valuations < h.

Online pricing

» Say you are selling lemonade (or bottles of water outside a
football stadium).

. _ View each possible
For t=1.2,.T price as a different
- Seller sets price p! row/expert

- Buyer arrives with valuation v*
- If vt > pt, buyer purchases and pays p', else doesn't.

- Repeat. —

$3.00 a glass

* Goal: do nearly as well as b
price in hindsight.

+ If v' revealed, run RWM. E[gain] > OPT(1-¢) - O(e! h log n).



Multi-armed bandit problem

Exponential Weights for Exploration and Exploitation (exp3)

[Auer,Cesa-Bianchi,Freund,Schapire]

Distrib p'

Experti~q'

Gain g Gain vector g

gf = (O:---,O, giT/qiT,O,...,O)

RWM

< nh/~
q" = (1-y)p* + v unif ]
H#Hexperts

n=

1. RWM believes gain is: p* - g* = p;'(g'/q") = g'rwm
2.2 9awm = OPT (1-¢) - O(e'l nh/~ |09 h)
3. Actual gain is: g = g'swm (@77P1) > gtrwm(1-7)

4. E[OPT] > OPT. Because E[§;"] = (1- q;)0 + q;"(g;'/q;") = g"

so E[max;[>, §;'1]1 > max;[ E[X, §;']] = OPT.

OPT



Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

[Auer,Cesa-Bianchi,Freund,Schapire]

Distrib p‘r OPT

Gain vector g RWM

< nh/~
q*=(1-v)p*+vM( } 1=
H#Hexperts

Q‘T = (O:---,O, giT/qiT,O,...,O)

Experti~q' qt

Exp3

Gain g;'

Conclusion (vy = ¢):
E[Exp3] > OPT(1-€)? - O(e? nh log(n))

[Balancing would give O((OPT nh log n)?/3) regret because of €2, Bu’r}

can reduce to eland O((OPT nh log n)/2) with better analysis.




Another reduction (not as good but more generic)

Given: algorithm A for full-info setting with regret < R(T).
Goal: use in black-box manner for bandit problem.
Preliminaries:

+ First, suppose we break our T time steps into K blocks of

size T/K each.
) T/K ‘

o} B2 Bt BK

+ Use same distrib throughout block and update based on
average cost vector c* for block . 4[ Because really paying J

+ Then, will get regret < R(K) T/K. T/K c* per block

¢ What if we instead update on cost vector ¢’ € [0,1]N
that's a random variable whose expectation is correct?




Another reduction (not as good but more generic)

Given: algorithm A for full-info setting with regret < R(T).
Goal: use in black-box manner for bandit problem.
Preliminaries:

* First, suppose we break our T time steps into K blocks of

size T/K each.
COT/K

) R2 Bt BK
* Do at least as well by {0,1}—[0,1] argument. Still get
regret bound R(K) T/K.

+ How does this help us for bandit problem?

¢ What if we instead update on cost vector ¢’ € [0,1]N
that's a random variable whose expectation is correct?



Experts — Bandit setting

¢

For bandit problem, for each action, pick random time
step in each block to try it as "exploration”.

Define ¢’ only wrt these exploration steps.

Just have to pay an extra at most NK for cost of this

exploration.
T/K

o} B2 Bt BK

Do at least as well by {0,1}—[0,1] argument. Still get
regret bound R(K) T/K.

How does this help us for bandit problem?

What if we instead update on cost vector ¢’ € [0, 1N
that's a random variable whose expectation is correct?



Experts — Bandit setting

¢

For bandit problem, for each action, pick random time
step in each block to try it as "exploration”.

Define ¢’ only wrt these exploration steps.

Just have to pay an extra at most NK for cost of this

exploration.
T/K

o} B2 Bt BK

Final bound: R(K) T/K + NK.

Using K = (T/N)?/3 and bound from RWM, get cumulative
regret bound of O(T2/3NY3 log N) .



Summary

Can apply algorithms for online decision-
making even with very limited feedback.

« Application: which way to drive to work, with
only feedback about your own paths; online
pricing, even if only have buy/no buy feedback.
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