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ML for Mechanism Design

 In Lecture 11, we introduced the notion of incentive-

compatible mechanisms.

 And we analyzed the sample complexity for learning 

reserve prices to maximize revenue in a Vickrey auction.

 Today, we will examine some other selling mechanisms.

 Material from: Balcan MF, Sandholm T, Vitercik E. “A 

general theory of sample complexity for multi-item profit 

maximization.”  EC-2018, Operations Research 2025.



Posted-Price Mechanisms

 Selling 𝑛𝑖𝑡𝑒𝑚𝑠 different items.

 Mechanism assigns each item 𝑖 
a price 𝑝𝑖.

 Buyers have arbitrary valuation functions over bundles 

𝐵 ⊆ 1,… , 𝑛𝑖𝑡𝑒𝑚𝑠 , and purchase the bundle of highest 

value(B) – price(B).

 Assume some distribution 𝐷 over buyers.  How many 

samples do we need so that pricing that maximizes 

revenue on the sample is near-optimal over 𝐷?

 Analyze the pseudo-dimension.



Pseudo-dimension of posted 
price mechanisms

 Selling 𝑛𝑖𝑡𝑒𝑚𝑠 different items.

 Mechanism assigns each item 𝑖 
a price 𝑝𝑖.

Dual space has dimension 𝑑 = 𝑛𝑖𝑡𝑒𝑚𝑠.

 For any given buyer, preference of bundle 𝐵1 vs 𝐵2 

determined by value(𝐵1) – price(𝐵1) vs value(𝐵2) – price(𝐵2).

 So, at most 𝑘 =
2𝑛𝑖𝑡𝑒𝑚𝑠

2
 linear boundary functions.

 And within each region, revenue is linear.

 Gives a pseudo-dim of 𝑂 𝑛𝑖𝑡𝑒𝑚𝑠 ⋅ 𝑛𝑖𝑡𝑒𝑚𝑠 = 𝑂(𝑛𝑖𝑡𝑒𝑚𝑠
2 ).



Two-part tariffs

 Single item, but multiple copies. (Assume any given buyer wants 

at most 𝐾).

 Seller sets an upfront fee 𝑝0 and a per-unit fee 𝑝1.  Cost to 

buy 𝑘 units is 𝑝0 + 𝑘𝑝1.

 Examples: Costco, utilities, some amusement parks.



Menus of two-part tariffs

 Have 𝐿 different two-part tariffs 𝑝0
1, 𝑝1

1 , 𝑝0
2, 𝑝1

2 , … 𝑝0
𝐿 , 𝑝1

𝐿

 Buyer picks a tariff 𝑖 and a number 𝑘 ≤ 𝐾 of units to buy, and 

pays 𝑝0
𝑖 + 𝑘𝑝1

𝑖 .

 What can we say about the pseudo-dimension now?



Pseudo-dimension of menus of two-part tariffs

 Have 𝐿 different two-part tariffs 𝑝0
1, 𝑝1

1 , 𝑝0
2, 𝑝1

2 , … 𝑝0
𝐿 , 𝑝1

𝐿

 Buyer picks a tariff 𝑖 and a number 𝑘 ≤ 𝐾 of units to buy, and 

pays 𝑝0
𝑖 + 𝑘𝑝1

𝑖 .

 Dual space has dimension 𝑑 = 2𝐿.

 What does the boundary look like between choices 

𝑖1, 𝑘1  and (𝑖2, 𝑘2)? Linear: 𝑝0
𝑖1 + 𝑘1𝑝1

𝑖1 = 𝑝0
𝑖2 + 𝑘2𝑝1

𝑖2

 At most 𝑂(𝐿2𝐾2) linear boundary functions, and revenue 

is linear within each region. 

 So, pseudo-dimension is 𝑂(𝐿 log(𝐾𝐿)).  

 See [Balcan-Sandholm-Vitercik] for more.



Now, switching to online learning



The Adversarial Multi-Armed Bandit Problem

 In our previous discussion of online learning, we 
assumed “full feedback”: we see how well we would 
have done had we made a different choice.
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The Adversarial Multi-Armed Bandit Problem

 In our previous discussion of online learning, we 
assumed “full feedback”: we see how well we would 
have done had we made a different choice.

 But what if we only get feedback for the action we 
choose? 

 This is called the “multi-armed bandit” setting.

 But first, a quick discussion of [0,1] vs {0,1} costs for 
RWM algorithm



[0,1] costs vs {0,1} costs.

We analyzed Randomized Wtd Majority for case that all 
costs in {0,1} (and slightly hand-waved extension to [0,1])

Here is an alternative simple way to extend to [0,1].

 Given cost vector c, view ci as bias of coin.  Flip to create 
boolean vector c’, s.t. E[c’i] = ci.  Feed c’ to alg A.

 For any sequence of vectors c’, we have:

◼ EA[cost’(A)] · mini cost’(i) + [regret term]

 So, E$[EA[cost’(A)]] · E$[mini cost’(i)] + [regret term]

 LHS is EA[cost(A)].  (since A picks weights before seeing costs)

 RHS · mini E$[cost’(i)] + [r.t.] = mini[cost(i)] + [r.t.]

In other words, costs between 0 and 1 just make the 
problem easier…

c
$

c’
world A

Cost’ = cost on 
c’ vectors



Experts ! Bandit setting

 In the bandit setting, only get feedback for the action 
we choose.  Still want to compete with best action in 
hindsight.

 [ACFS02] give algorithm with cumulative regret            
O( (TN log N)1/2 ).  [average regret O( ((N log N)/T)1/2 ).]

 Will do a somewhat weaker version of their analysis 
(same algorithm but not as tight a bound).

 Talk about it in the context of online pricing…



Online pricing
• Say you are selling lemonade (or bottles of water outside a 

football stadium).

• For t=1,2,…T

– Seller sets price pt

– Buyer arrives with valuation vt

– If vt ¸ pt, buyer purchases and pays pt, else doesn’t.

– Repeat.

• Assume all valuations · h.

$2

• Goal: do nearly as well as best fixed 
price in hindsight.

View each possible 
price as a different 

row/expert

• If vt revealed, run RWM. E[gain] ¸ OPT(1-²) - O(²-1 h log n).



Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

RWM

n = 
#experts

Exp3

Distrib pt

Expert i ~ qt

Gain gi
t

Gain vector ĝt

qt

qt = (1-°)pt + ° unif

ĝt = (0,…,0, gi
t/qi

t,0,…,0)

OPT

OPT

1. RWM believes gain is: pt ¢ ĝt  =  pi
t(gi

t/qi
t)  ´ gt

RWM

3. Actual gain is: gi
t  = gt

RWM (qi
t/pi

t) ¸ gt
RWM(1-°)

2. t g
t
RWM ¸        (1-²) - O(²-1 nh/° log n)OPT 

4. E[      ] ¸ OPT. OPT Because E[ĝj
t] = (1- qj

t)0 + qj
t(gj

t/qj
t) = gj

t ,

so E[maxj[t ĝj
t]] ¸ maxj [ E[t ĝj

t] ]  = OPT.

· nh/°

[Auer,Cesa-Bianchi,Freund,Schapire]



Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

RWM

n = 
#experts

Exp3

Distrib pt

Expert i ~ qt

Gain gi
t

Gain vector ĝt

qt

qt = (1-°)pt + ° unif

ĝt = (0,…,0, gi
t/qi

t,0,…,0)

OPT

OPT

Conclusion (° = ²):  
  E[Exp3] ¸ OPT(1-²)2 - O(²-2 nh log(n)) 

[Auer,Cesa-Bianchi,Freund,Schapire]

· nh/°

Balancing would give O((OPT nh log n)2/3) regret because of ²-2.  But 
can reduce to ²-1 and O((OPT nh log n)1/2) with better analysis. 



Another reduction (not as good but more generic)

Given: algorithm A for full-info setting with regret · R(T).

Goal: use in black-box manner for bandit problem.

Preliminaries:

 First, suppose we break our T time steps into K blocks of 
size T/K each. 

 Use same distrib throughout block and update based on 
average cost vector c for block .

 Then, will get regret · R(K)  T/K.

 What if we instead update on cost vector c’ 2 [0,1]N 
that’s a random variable whose expectation is correct?

B1 B2 B BK

T/K

Because really paying 
T/K  c per block 



B1 B2 B

Given: algorithm A for full-info setting with regret · R(T).

Goal: use in black-box manner for bandit problem.

Preliminaries:

 First, suppose we break our T time steps into K blocks of 
size T/K each. 

 Do at least as well by {0,1}![0,1] argument.  Still get 
regret bound R(K)  T/K.

 How does this help us for bandit problem?

 What if we instead update on cost vector c’ 2 [0,1]N 
that’s a random variable whose expectation is correct?

BK

T/K

Another reduction (not as good but more generic)



Experts ! Bandit setting

 For bandit problem, for each action, pick random time 
step in each block to try it as “exploration”.

 Define c’ only wrt these exploration steps.

 Just have to pay an extra at most NK for cost of this 
exploration.

 Do at least as well by {0,1}![0,1] argument.  Still get 
regret bound R(K)  T/K.

 How does this help us for bandit problem?

 What if we instead update on cost vector c’ 2 [0,1]N 
that’s a random variable whose expectation is correct?

B1 B2 B BK

T/K



Experts ! Bandit setting

 For bandit problem, for each action, pick random time 
step in each block to try it as “exploration”.

 Define c’ only wrt these exploration steps.

 Just have to pay an extra at most NK for cost of this 
exploration.

 Final bound: R(K)  T/K + NK.

 Using K = (T/N)2/3 and bound from RWM, get cumulative 
regret bound of O(T2/3N1/3 log N) .

B1 B2 B BK

T/K



Summary

Can apply algorithms for online decision-
making even with very limited feedback.

• Application: which way to drive to work, with 
only feedback about your own paths; online 
pricing, even if only have buy/no buy feedback.
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