
TTIC 31290: Machine Learning for Algorithm Design (Fall 2025)

Avrim Blum and Dravyansh Sharma

Lecture 13: 11/13/25 Lecturer: Dravyansh Sharma

Outline for today

• Online Algorithm Design

• Dispersion and Regret Bounds

1 Online Algorithm Design

In the last lecture we saw some fundamental concepts related to online learning. We will now see
how to model algorithm design as an online learning problem. In the statistical learning setting,
input instances are i.i.d. and given to us all at once. Here we will view different algorithms as
“experts”. Given an online sequence of inputs, our goal will be to be competitive with the best
algorithm in hindsight, on average for these inputs. The learner can keep changing the algorithm
for the new inputs based on all the inputs it has seen so far.

Formal setup. We consider a sequence of rounds t = 1, . . . , T . In round t, the learner selects
an algorithm At ∈ A (say by selecting a parameter ρt ∈ P ⊆ Rd), and applies it to a new
problem instance xt ∈ Π. The performance of the algorithm on the instance xt is given by a utility
function uxt(ρt)

1 In the full information setting, the learner now observes uxt(ρ) for all parameters ρ.
Intuitively, given sufficient time/compute the learner can potentially compute uxt for all algorithms
in the family before the next input is presented. More challenging learning settings include bandit
and semi-bandit settings where we get partial feedback (e.g. just uxt(ρt), or uxt(ρ) for a subset of
algorithms which we know have a similar behavior as ρt on xt). We want to maximize the total
utility across all rounds, and ideally be close in performance to the best algorithm in the family.
Formally, we will seek to minimize the regret

RT := E

[
max
ρ∈P

∑
t

uxt(ρ)− uxt(ρt)

]
where the expectation is over the randomness in the learner’s choices or over the randomness in
the utility functions (e.g. the algorithms may have randomization).

We would like to obtain expected regret that is sublinear in T , since then the average (per-round)
performance of the algorithm approaches that of the best parameter in hindsight (commonly re-
ferred as achieving “no regret” in online learning).

But this goal may be unattainable for typical algorithm families that we have seen in this class.
Here we will see a simple example.

1In our previous terminology, we will directly work with the dual utility functions here.

1

Recall the family of greedy algorithms for the knapsack problem. A problem instance x consists
of n items given by values v1, . . . , vn ∈ R≥0 and sizes s1, . . . , sn ∈ R+, and an overall knapsack
capacity C ∈ R+ and we want to find the subset of items with largest total value for which the
total size is at most C. The family of greedy algorithms select items in decreasing order of the
score vi/s

ρ
i where ρ is the parameter. Let the parameter space P = [0, 1].

Lemma 1. Fix any ρ∗ ∈ (0, 1) and choose ∆ > 0. There exists knapsack instances xρ∗ and x′ρ∗
such that the utility functions are piecewise constant with exactly two pieces over [0, 1] and the gap
between the utility in the two pieces is at least ∆. Moreover, the instance xρ∗ has higher utility for
ρ < ρ∗ but the instance x′ρ∗ has higher utility for ρ > ρ∗.

Proof. First, we define the instance xρ∗ . Set the knapsack capacity C = 1. There will be two
items. A first item with size s1 = 1 and value v1 = 1 + ∆ and a second (smaller) item with size
s2 = ϵ ∈ (0, 1) (to be set later) and value v2 = 1. The critical point in the dual utility function is

given by v1
sρ

∗
1

= v2
sρ

∗
2

, or s2 = s1

(
v2
v1

)1/ρ∗
, giving us ϵ = (1 + ∆)−1/ρ∗ . For ρ < ρ∗, we add the larger

item and get the total value 1+∆. For ρ > ρ∗, we choose the smaller item and get a total value 1.

For x′ρ∗ , we will have three items and again set the capacity C = 1. We have a larger item with

v1 = 3∆, s1 = 3/4, and two smaller items that have s2 = s3 = 1/2 and v2 = 3∆(2/3)ρ
∗
. In

this case, for ρ < ρ∗ we pick the larger item as v1
sρ1

= v2
sρ2

· (3/2)ρ∗−ρ > v2
sρ2

to get a total value 3∆.

Else, we are able to add both the smaller items, and get a value of 6∆ (2/3)ρ
∗
. The difference is

3∆(2 (2/3)ρ
∗
− 1) ≥ 3∆(4/3− 1) = ∆.

We can now use Lemma 1 to show that sub-linear regret is an unattainable goal in general for worst-
case sequences of problem instances. The adversary will set instances xt in round t by selecting a
value ρ∗t and presenting either the instance xρ∗t or x′ρ∗t

with equal probability. The sequence ρ∗t will
be chosen to guarantee that the learner’s choices ρt have a large regret with respect to some ρ∗.

The adversary sets ρ∗1 = 1/2. Now, if x1/2 was presented, we will set ρ∗2 = 1/4, else if x′1/2 was

presented we set it to ρ∗2 = 3/4. In general, for t > 1, if xρ∗t was presented we set ρ∗t+1 = ρ∗t − 1
2t , and

else set ρ∗t+1 = ρ∗t +
1
2t . Since the adversary sets the next instances after the random selection for

instance xt, it is able to ensure that the online learner suffers a regret at least (t∆)/2 with respect
to some ρ∗ after t rounds. In other words, the regret of any online learner is at least Ω(T).

This motivates the need for further assumptions to attain sub-linear regret. In this lecture we will
look at one such sufficient condition.

2 Dispersion and Regret Bounds

One thing to note about the above lower bound construction is that location of the discontinuities
get exponentially closer to each other over the rounds, which means that, for large T , most in-
stances will have their discontinuities in a small region in the parameter space. Motivated by this
observation, here we will define a condition which will explicitly prevent this from happening.

Definition 1 (Dispersion). The sequence of utility functions u1, . . . , uT is β-dispersed for the Lip-
schitz constant L if, for all T and for all ϵ ≥ T−β, at most Õ(ϵT) functions (the soft-O notation

2

suppresses dependence on logarithmic terms and quantities beside ϵ, T and β) are not L-Lipschitz
in any ball of size ϵ contained in P. Further if the utility functions are obtained from some distribu-
tion, the random process generating them is said to be β-dispersed if the above holds in expectation,
i.e., if for all T and for all ϵ ≥ T−β,

E
[
max
ρ∈P

∣∣{t | ut not L-Lipschitz in B(ρ, ϵ)}
∣∣] ≤ Õ(ϵT),

where B(ρ, ϵ) is the ball of radius ϵ centered at ρ in P (assumed to be metric space).

Note that the above definition implies that the sequence of utility functions have some random-
ization (this may be due to randomization in the problem instances, which is less strong than the
iid assumption, or in the algorithm itself), and may not now be fully adversarial. We think of β
as a measure of “niceness” of the sequence of functions, that takes values between 0 and 1. Any
function sequence is 0-dispersed as β = 0 holds trivially.

We will now see how to get sublinear regret that depends on the dispersion coefficient β for any
β < 1. The algorithm is a generalization of the randomized weighted majority to the continuous
setting (which can be recovered when the utility functions have a finite domain and binary range).
Formally, in round t, we sample a random ρt according to the distribution

pt(ρ) ∝ exp

(
λ

(
t−1∑
s=1

us(ρ)

))
.

In other words, each “expert” ρ has a weight exp
(
λ
(∑t−1

s=1 us(ρ)
))

that we update according to the

observed utility for that “expert” so far, and we select a random expert in proportion to its weight.
For now, we will ignore the computational aspects related to sampling from this distribution. For
this algorithm, we have the following regret guarantee.

Theorem 1. Let ux1 , . . . , uxT : P → [0, 1] be a sequence of utility functions corresponding to prob-
lem instances x1, . . . , xT . Assume that the sequence is β-dispersed for Lipschitz constant L and the
domain P ⊂ Rd is bounded and contained in a ball of radius R. The continuous weighted majority

algorithm with some appropriate λ has expected regret bounded by Õ
(√

Td+ T 1−β(L+ 1)
)
.

Proof Sketch. The total weight of all experts at the end of round t is given by

Wt =

∫
P
exp

(
λ

(
t∑

s=1

us(ρ)

))
dρ.

We will give upper and lower bounds on WT in terms of the payoff of the algorithm and the optimal
payoff for any ρ respectively.

The upper bound follows a straightforward generalization of the classical argument.

WT ≤ W1 exp

(
(eλ − 1)

T∑
t=1

uxt(ρt)

)
.

3

The lower bound uses dispersion. For any point ρ ∈ B(ρ∗, ϵ) with ϵ = T−β, we have

T∑
t=1

uxt(ρ) ≥
T∑
t=1

uxt(ρ
∗)− Õ(ϵT)− LϵT.

Thus,

WT =

∫
P
exp

(
λ

(
t∑

s=1

us(ρ)

))
dρ ≥

∫
B(ρ∗,ϵ)

exp

(
λ

(
t∑

s=1

us(ρ)

))
dρ

≥ Vol(B(ρ∗, ϵ))

(
T∑
t=1

uxt(ρ
∗)− Õ(ϵT)− LϵT

)

≥ (ϵ/R)dW1

(
T∑
t=1

uxt(ρ
∗)− Õ(ϵT)− LϵT

)
,

where we have used that W1 ≤ Vol(B(ρ′, R)) for some ρ′ ∈ P by our boundedness assumption.
Putting together gives an upper bound on the regret, and choosing λ to minimize the upper bound
on the regret gives the desired upper bound.

Therefore, if we find conditions under which the utility functions are dispersed, we can guarantee
no-regret using the above result.

For the knapsack problem, we will show 1
2 -dispersion by making a mild assumption on the values,

namely they come from a distribution with bounded density. We note that this condition is strongly
linked with the notion of smoothed analysis mentioned earlier in the class. A special case of this
is that we start with arbitrary adversarial values for the items, and then add some random noise
(Gaussian noise is an example of a noise with bounded density).

Theorem 2. Let x1, . . . , xT be any sequence of knapsack instances with n items and capacity 1,

where instance xi has sizes s
(i)
1 , , s

(i)
n ∈ [1, C] and values v

(i)
1 , , v

(i)
n ∈ (0, 1]. Assume that

all the item values are come from a distribution with probability density bounded by b2. Then the
utility functions ux1 , . . . , uxT are 1

2 -dispersed.

Proof Sketch. The overall strategy is to first show bound the expected number of discontinuities
in any interval of width 2ϵ (ball of radius ϵ), which also gives a bound on the expected number of
functions that have a discontinuity in any interval of width 2ϵ, and then show that the maximum
number of discontinuities over any interval of width 2ϵ cannot be much larger than this expected
number (with high probability, given sufficiently large T).

Let c
(t)
ij = log(v

(t)
i /v

(t)
j)/ log(s

(t)
i /s

(t)
j) be the critical parameter value such that at ρ = c

(t)
ij , items

i and j swap their relative order in the t-th instance. Balcan et al. (FOCS, 2018) show that each

critical value c
(t)
ij is a random variable with a density function bounded by b2 ln(C)/2. Thus, for

any interval I = [ρ− ϵ, ρ+ ϵ] of radius ϵ, the expected total number of critical values c
(t)
ij summed

2For the Gaussian distribution with variance σ2, b = 1√
2πσ2

.

4

over all pairs of items and instances is at most ϵTn2b2ln(C). This is also an upper bound on the
expected number of utility functions in ux1 , . . . , uxT that have a discontinuity on I.

To complete the second part of the proof, we use the following result due to Balcan et al. (UAI
2020).

Lemma 2. Let u1, . . . , uT : R → R be independent piecewise L-Lipschitz functions, each having
at most K discontinuities. Let D(T, ϵ, ρ) = |{1 ≤ t ≤ T : ut is not L-Lipschitz on [ρ − ϵ, ρ +
ϵ]}| be the number of functions that are not L-Lipschitz on the ball [ρ − ϵ, ρ + ϵ]. Then we have
E[maxρ∈RD(T, ϵ, ρ)] ≤ maxρ∈R E[D(T, ϵ, ρ)] +O(

√
T log(TK)).

Thus, the expected maximum number of non-Lipschitz functions in any ball of radius ϵ is at most
ϵTn2b2ln(C) +O(

√
T log(Tn2)) = Õ(ϵT +

√
T). This implies 1

2 -dispersion.

Additional Resources:

• Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. “Dispersion for data-driven algorithm
design, online learning, and private optimization.” In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 603-614. IEEE, 2018.

• Maria-Florina Balcan, Travis Dick, and Wesley Pegden. “Semi-bandit optimization in the dis-
persed setting.” In Conference on Uncertainty in Artificial Intelligence (UAI), pp. 909-918.
PMLR, 2020.

• Maria-Florina Balcan, Travis Dick, and Dravyansh Sharma. “Learning piecewise Lipschitz func-
tions in changing environments.” In International Conference on Artificial Intelligence and Statis-
tics (AISTATS), pp. 3567-3577. PMLR, 2020.

5

	Online Algorithm Design
	Dispersion and Regret Bounds

