TTIC 31290 - Machine Learning for
Algorithm Design (Fall 2025)

Avrim Blum and Dravyansh Sharma

Lecturer: Avrim Blum

Lecture 12: Online learning

Mistake-bound model:
*Basic results, relation to PAC, halving algorithm
*Connections to information theory

Combining “"expert advice":
*(Randomized) Weighted Majority algorithm
‘Regret-bounds, connections to game theory

Online learning

* What if we don't want o make assumption
that data is coming from some fixed
distribution? Or any assumptions at all?

» Can no longer talk about past performance
predicting future results.

» Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

Mistake-bound learning model

» View learning as a sequence of stages.

* In each stage, algorithm is given x, asked to
predict f(x), and then is told correct value.

» Make no assumptions about order of
examples.

- Goal is to bound total number of mistakes.

Alg A learns class € with mistake bound M if A
makes < M mistakes on any sequence of examples
consistent with some f € C.

Mistake-bound learning model

Alg A learns class € with mistake bound M if A
makes < M mistakes on any sequence of examples
consistent with some f €C.

* Note: can no longer talk about "how much data do
I need to converge?” Maybe see same examples
over again and learn nothing new. But that's OK if
don't make mistakes either...

» Try to bound in terms of size of examples n and
complexity of target s.

+ Cis learnable in MB model if exists alg with
mistake bound and running time per stage poly(n,s).

Simple example: disjunctions
» Suppose features are boolean: X = {0,1}".

» Target is an OR function, like x5 v xg v Xq5.

» Can we find an on-line strategy that makes
at most n mistakes?

- Sure.

- Start with h(x) =x, vx, v .. vx,
- Invariant: {features in h} 2 {features in f}

- Mistake on negative: discard features in h set to
1 in x. Maintains invariant & decreases |h| by 1.

- No mistakes on positives. So at most n mistakes
total.

Simple example: disjunctions

+ Algorithm makes at most n mistakes.

* No deterministic alg can do better:
1000000 +or-2?
0100000 +or-?
0010000 +or-2?
0001000 +or-?

MB model properties

An alg A is "conservative" if it only changes its
state when it makes a mistake.

Claim: if C is learnable with mistake-bound M,
then it is learnable by a conservative alg.

Why? (Assume learning alg is deterministic)

+ Take generic alg A. Create new conservative
A’ by running A, but rewinding state if no
mistake is made.

- Still < M mistakes because A still sees a
legal sequence of examples.

MB learnable = PAC learnable

Say alg A learns C with mistake-bound M.
Transformation 1.

* Run (conservative) A until it produces a hyp h
that survives > (1/¢)In(M/3) examples.

* Pr(fooled by any given h) < 5/M.
* Pr(fooled ever) <.
Uses at most (M/¢)In(M/3) examples total.

* Fancier method gets O(¢"'[M + In(1/5)])

One more example...

* Say we view each example as an integer
between O and 2"-1.

+ C={[0,a] - a<2"}. (device fails if it gets too
hot)

*+ In PAC model we could just pick any
consistent hypothesis. Does this work in MB
model?

- What would work?

What can we do with
unbounded computation time?

* "Halving algorithm": take majority vote
over all consistent h € C. Makes at most
lg(|C|) mistakes.

* What if we had a "prior" p over fns in C?

- Weight the vote according to p. Make at most
I9(1/p;) mistakes, where f is target fn.

* What if f was really chosen according to p?
- Expected number of mistakes <>, [p, 19(1/p,)]
= entropy of distribution p.

What can we do with

unbounded computation time?

* "Halving algorithm”: take majority vote
over all consistent h € C. Makes at most
lg(|C|) mistakes.

- What if C has functions of different sizes?

* For any (prefix-free) representation, can
make at most 1 mistake per bit of target.
- Give each f a weight of 1/251¢(),

- Total sum of weights is at most 1. (Can you see
why?).

- So, make at most size(f) mistakes.

Is halving alg optimal?

* Not necessarily

» Can think of MB model as 2-player game
between alg and adversary.

- Adversary picks x to split C into C_(x) and
C.(x). [fns that label x as - or + respectively]

- Alg gets to pick one to throw out.
- Game ends when all fns left are equivalent.

- Adversary wants to make game last as long as
possible.

*+ OPT(C) = MB when both play optimally.

Is halving alg optimal?

* Halving algorithm: throw out larger set.

» Optimal algorithm: throw out set with
larger mistake bound.

What if there is no perfect function?

Think of as h € C as "experts” giving advice
to you. Want to do nearly as well as best
of them in hindsight.

These are called "regret bounds”.
»Show that our algorithm does nearly as
well as best predictor in some class.

We'll look at a strategy whose running
time is O(|C|). So, only computationally
efficient when C is small.

Using "expert” advice

+ We solicit n "experts” for their advice. (Will the
market go up or down?)

- We then want to use their advice somehow to
make our prediction. E.g.,

Expt 1 Expt 2 Expt 3 neighbor’s dog | truth
down up

down up

Can we do nearly as well as best in hindsight?

["expert” = someone with an opinion. Not necessarily someone

who knows anything.]
[Ini.i.d. setting, could just sample a while and then pick the best on your sample]

Using "expert” advice

If one expert is perfect, can get < Ig(n) mistakes
with halving alg.

But what if none is perfect? Can we do nearly as
well as the best one in hindsight?
S’rraTegy #1.

* Iterated halving algorithm. Same as before, but
once we've crossed off all the experts, restart
from the beginning.

- Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
"learned”. Can we do better?

Weighted Majority Algorithm

Making a mistake doesn't completely

disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.
Weights: 1 1 1 1
Predictions: U U U D
1

We predict: U Truth: D
Weights: 3+ 3 3%

Analysis: do nearly as well as best
expert in hindsight
M = # mistakes we've made so far.

m = # mistakes best expert has made so far.
W = total weight (starts at n).

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.
Weight of best expert is (1/2)™. So,

(1/2)™ < n(3/4)M
(4/3)M < n2m
M < 24(m+4Ign)

Randomized Weighted Majorit

2.4(m + g n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.

» Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick
70:30) Idea: smooth out the worst case.

- Also, generalize 3 to 1- <.
—mIn(l —¢) 4+ In(n)

€

M:expec‘red M<1 2 —1/2
[#mistakes } s 1.39m+2inn e /

Solves to: M <

~(14+¢e/2)m+ é In(n)

M<1.15m+4Inn —e=1/4

M<1.07m+8Inn «—e=1/8

Analysis -
- Say at time t we have fraction I, of t
weight on experts that made mistake.

+ So, we have probability F, of making a mistake, and
we remove an ¢I', fraction of the total weight.
= Weing = n(1-e F;)(1 - ¢ Fy)...

= In(Wsing) = In(n) + 2, [In(1 - e F)] < In(n) - € 2 F,
(using In(1-x) < x)

= In(n) - ¢ M. (X F, = E[# mistakes])

+ If best expert makes m mistakes, then In(Ws;,q) > In((1-€)™).
* Now solve: In(n) - ¢ M > m In(1-¢).

—mIn(l —¢) 4+ In(n)

E

M <

~ (L+¢e/2)m+ — IOg(n)

Summarizing
+ E[# mistakes] < (1+€)OPT + ¢llog(n)

T e

+ If set e=(log(n)/OPT)¥2 to balance the two terms
out (or use guess-and-double), get bound of
M < OPT+2(OPT-log n)/2 < OPT+2(Tlogn)!/?

+ Define average regret in T time steps as:

(avg per-day cost of alg) - (avg per-day cost of best
fixed expert in hindsight).

Goes to O or better as T-» o = “no-regret” algorithm].

Extensions

* What if experts are actions? (rows in a matrix
game, ways to drive to work,...)

+ At each time t, each has a loss (cost) in {O,1}.
» Can still run the algorithm

- Rather than viewing as "pick a prediction with
prob proportional to its weight” ,

- View as "pick an expert with probability
proportional to its weight”

- Alg pays expected cost p; - ¢; = F;.
- Same analysis applies.
Do nearly as well as best action in hindsight!

Extensions

* What if losses (costs) in [0,17?

+ Just modify alg update rule: w; « w;(1 — ec;).

* Fraction of wt removed from system is:
(iwiec) /(2 jw)) = € X p; ¢; = €[our expected cost]
» Analysis very similar to case of {0,1}.

RWM (multiplicative weights alg)

(1-ec42)(1-ec M1
(1-ec,?)(1-ec,)1
(1-ec5?)(1-ec5H)1

. o1
1

(1-gc,2)(1-sc, 1)1

World - life - opponent

cl

c2

scaling
S0 costs
in [0O,1]

Guarantee: do nearly as well as best fixed row in hindsight

The algo as stated requires seeing entire cost vector at each time
step, but can extend to the bandit case where at each step you
only see the cost of the row you chose (but logn becomes 0(n)).

Some References

* N. Littlestone, "Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm." Machine
learning, vol 2, 1988.

* N. Littlestone and M.K. Warmuth. "The weighted majority
algorithm." Information and computation, vol 108.2, 1994,

* N. Cesa-Bianchi, Y. Freund, D. Haussler, D.P. Helmbold, R.E.
Schapire, and M.K. Warmuth. "How to use expert advice."
Journal of the ACM, vol 44, no. 3, 1997.

* Y. Freund and R.E. Schapire. "Adaptive game playing using
multiplicative weights." Games and Economic Behavior 29,
no. 1-2, 1999.

	Slide 1: TTIC 31290 - Machine Learning for Algorithm Design (Fall 2025)
	Slide 2: Online learning
	Slide 3: Mistake-bound learning model
	Slide 4: Mistake-bound learning model
	Slide 5: Simple example: disjunctions
	Slide 6: Simple example: disjunctions
	Slide 7: MB model properties
	Slide 8: MB learnable implies PAC learnable
	Slide 9: One more example…
	Slide 10: What can we do with unbounded computation time?
	Slide 11: What can we do with unbounded computation time?
	Slide 12: Is halving alg optimal?
	Slide 13: Is halving alg optimal?
	Slide 14: What if there is no perfect function?
	Slide 15: Using “expert” advice
	Slide 16: Using “expert” advice
	Slide 17: Weighted Majority Algorithm
	Slide 18: Analysis: do nearly as well as best expert in hindsight
	Slide 19: Randomized Weighted Majority
	Slide 20: Analysis
	Slide 21: Summarizing
	Slide 22: Extensions
	Slide 23: Extensions
	Slide 24: RWM (multiplicative weights alg)
	Slide 28

