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Outline for today

• Second-price Auctions

• Multi-item generalization (VCG Mechanism)

• Data-driven mechanism design

1 Second-price Auctions

We consider a single indivisible item for sale among n bidders. Each bidder i ∈ {1, 2, . . . , n} has a
private valuation vi ≥ 0 for the item, representing the maximum amount they are willing to pay.

• Each bidder submits a sealed bid bi ≥ 0.

• Let b(1) = maxi bi denote the highest bid, and b(2) the second-highest bid.

A second-price (Vickrey) auction is defined by the following allocation and payment rules:

(a) The bidder i∗ with the highest bid wins the item:

i∗ = argmax
i

bi.

(b) The winner pays the second-highest bid as the price:

pi∗ = b(2).

(c) All other bidders j ̸= i∗ receive nothing and pay zero:

pj = 0.

For a bidder i, define the utility function under quasi-linear preferences as:

ui(bi, b−i) =

{
vi − pi if bidder i wins the item,

0 otherwise.
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1.1 Second-price auctions are strategy-proof

Definition 1. A bidding strategy bi(vi) is a dominant strategy for bidder i if for every possible
valuation profile of the other bidders v−i and their corresponding bids b−i,

ui(bi(vi), b−i) ≥ ui(b
′
i, b−i) for all possible deviations b′i.

We will now show that truthful bidding maximizes bidder i’s utility regardless of what others do.

Theorem 1. In a second-price auction, it is a dominant strategy for each bidder i to bid their true
valuation:

bi = vi.

Proof. Fix any bidder i with valuation vi, and let b−i be the bids of all other bidders. Let b−i
(1) =

maxj ̸=i bj denote the highest bid among others.

(a) Case 1: vi < b−i
(1).

If i bids truthfully, bi = vi < b−i
(1), so i loses and utility is 0. If i overbids (i.e., bi > b−i

(1)), i wins

and pays b−i
(1), obtaining

ui = vi − b−i
(1) < 0.

Thus overbidding strictly reduces utility. Underbidding changes nothing. Hence truthful
bidding maximizes utility.

(b) Case 2: vi > b−i
(1).

If i bids truthfully, bi = vi > b−i
(1), so i wins and pays b−i

(1), getting

ui = vi − b−i
(1) > 0.

If i underbids (i.e., bi < b−i
(1)), i loses and utility is 0, which is worse. Overbidding does not

change the outcome, since i would still win and pay b−i
(1).

Therefore, bidding bi = vi weakly dominates all other strategies.

Remark 1. The second-price auction is an example of a dominant-strategy incentive compatible
(DSIC) mechanism by Theorem 1. It is also efficient, the item is always allocated to the bidder
with the highest valuation.

2 Multi-item generalization (VCG Mechanism)

We now consider the generalization of the second-price auction to the case of multiple items or,
more generally, arbitrary outcomes.

Let:

• O be the set of possible outcomes (e.g., allocations of items).
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• There are n bidders, indexed by i = 1, . . . , n.

• Each bidder i has a private valuation function

vi : O → R≥0,

representing how much i values each possible outcome.

An example special case is a multi-item auction, where O is the set of allocations of m items
among n bidders, and vi(Si) is the value bidder i assigns to receiving the subset Si of items.

2.1 Mechanism Definition

Each bidder reports a bid function bi : O → R≥0, which may differ from their true valuation vi.

Outcome Rule (Allocation). The mechanism selects the outcome that maximizes total re-
ported welfare:

o∗(b) = argmax
o∈O

n∑
i=1

bi(o).

Payment Rule. Each bidder i pays

pi(b) =

max
o∈O

∑
j ̸=i

bj(o)

−
∑
j ̸=i

bj(o
∗(b)).

That is, bidder i pays the externality they impose on others,

pi = (welfare of others without i)− (welfare of others with i).

Bidder i’s utility is
ui(b) = vi(o

∗(b))− pi(b).

2.2 VCG is DSIC

Theorem 2. In the Vickrey–Clarke–Groves mechanism, truthful reporting is a dominant strategy
for each bidder,

bi = vi.

Proof. Fix any bidder i and any reports b−i of others.

Let o∗(vi, b−i) denote the outcome chosen if i bids truthfully, and o∗(b′i, b−i) denote the outcome if
i misreports as b′i.

Under the VCG payment rule

ui(b
′
i, b−i) = vi(o

∗(b′i, b−i))−

max
o∈O

∑
j ̸=i

bj(o)

−
∑
j ̸=i

bj(o
∗(b′i, b−i))

 .
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The term
[
maxo∈O

∑
j ̸=i bj(o)

]
does not depend on b′i and thus does not affect the optimization.

Therefore, bidder i maximizes

vi(o
∗(b′i, b−i)) +

∑
j ̸=i

bj(o
∗(b′i, b−i)).

But o∗(b′i, b−i) is defined as the maximizer of
∑

k bk(o). When b′i = vi, this expression becomes
exactly

o∗(vi, b−i) = argmax
o

∑
k

vk(o),

i.e., the outcome maximizing true total welfare.

Thus, by bidding truthfully, bidder i ensures that the chosen outcome maximizes their own utility
function above. Any misreport can only reduce this quantity, so bi = vi is a dominant strategy.

We note the following.

• When there is a single item, the VCG mechanism reduces to the second-price auction.

• When there are multiple items but additive valuations (vi(Si) =
∑

j∈Si
vij), the VCG mechanism

corresponds to each item being sold via an independent second-price auction.

• For combinatorial valuations, VCG ensures efficiency and truthfulness but may be computation-
ally intractable (the outcome rule can be NP-hard to compute).

3 Data-driven mechanism design

Suppose there are m distinct items, and the bidders have additive valuations for the different items.
We consider a slight extension of the above to include reserve prices. For each item j, we set a
minimum price pj so that the item is sold for at least that price. The bidder with the highest bid
for an item j must have bid at least pj to get the item (else no one gets item j), and their payment
is the maximum of the second highest bid and the reserve price pj . For fixed reserve prices, the
mechanism is still DSIC.

Suppose there is an unknown distribution D over the bidders’ values. Since VCG is DSIC, so
we assume that the bids equal the bidders’ valuations. Can we design a mechanism that sets the
reserve prices to maximize the expected revenue (total payment for all items) over D, given access
to sample auctions?

Theorem 3. The revenue function class, consisting of functions parameterized by the reserve prices
p = (p1, . . . , pm) that give the revenue of any auction for a given reserve prices, is (F ,G, 2m)-
decomposable, where F consists of linear functions Rm → R and G consists of linear thresholds
Rm → {0, 1}.

Proof. Given a fixed instance (fixed valuation and fixed bids), let ij and i′j be the highest and
second highest bidders for item j. Item j is sold to bidder ij if the bid bij ≥ pj and the revenue is
either pj or bi′j depending on whether pj ≥ bi′j . Thus, there are 2m axis-aligned hyperplanes that

partition Rm into regions where the revenue is linear.
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Additional Resources:

• Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University Press,
2016.

• Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. “Generalization guarantees for
multi-item profit maximization: Pricing, auctions, and randomized mechanisms.” Operations
Research 73, no. 2 (2025): 648-663.
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