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Outline for today

e Graph-based Semi-supervised Learning

e Linear Regression

1 Graph-based Semi-supervised Learning

Recall that in our PAC learning setup, we had access to labels for all the examples (in both realizable
and agnostic settings) in our “training set”. Perhaps a more natural learning setting is one where
we have access to some labeled examples, but also a much larger collection of unlabeled examples.
For example, a child learning the concept of a “dog” perhaps initially sees some “labeled” examples
in a book or real life, but also (especially in Chicago!) sees a lot of “unlabeled” examples. For
another example, think of an email server trying to label emails as spam or not spam. For the large
number of emails generated each day, some might be explicitly labeled by the users, but most are
left unlabeled.

But how can we learn anything from unlabeled examples? Well, some unlabeled examples may be
“similar” to some labeled or other unlabeled examples. Since similarity is a pairwise relation, it is
natural to think of it as given by a (possibly weighted) graph over the examples.

Formally, suppose we are given a collection of (binary) labeled examples, L, and unlabeled examples,
U. Suppose G is some graph with vertex set V' = L U U. Since the labels are binary, any labeling
of the graph corresponds to a partition of V', or equivalently a cut C' of the graph. Now recall the
edges of the graph correspond to pairwise similarity of the examples. Now edges in the above cut
C have their end points labeled with opposite labels, despite the similarity indicated by the edge.
So we would like to minimize these “similarity violations”, for example by choosing a min-cut of
the graph, while being consistent with the labeled examples in L. The consistency condition can
be handled by adding two nodes ‘4’ and ‘~’, connecting all positive examples with an edge with
weight co with ‘+’ and connecting all negative examples with an edge with weight oo with ‘~’ (and
we can find the usual min-cut on this modified graph). Note that our concept space includes all
possible ways of labeling the unlabeled points in U. There are other reasonable ways to partition
the vertices of the graph besides the min-cut (e.g. by rounding a continuous extension of min-cut).
In this lecture we will focus on the min-cut.

But how do we design the graph G in the first place? A common scenario is that we have access
to pairwise distances d(x;,x;) between the examples (say, distance in some feature space). Given
these distances, there are several ways to design the graph.



1.1 Unweighted “threshold” graphs

Perhaps the simplest way to design a graph using a distance metric d(-,-) is to use unweighted
edges, placing the edge between a pair of nodes z;,z; € V iff their distance d(z;,z;) < 7, for some
threshold 7 € R>g. Can we tune 7 in the data-driven algorithm design framework?

Formally, a problem instance is given by a set of n nodes V' = (L, U), along with pairwise distances
d(-,-) between these nodes. A natural utility function is the average accuracy of the predicted labels.
That is, u,(V, d) is the fraction of points labeled correctly when we construct the (unweighted) graph
with threshold parameter 7, and label the unlabeled nodes using a min-cut of the modified graph
described above. How many instances (V1,dy), (Va,dz), ... are sufficient to learn a good parameter
T?

Theorem 1. Let U = {u,(-,-) | 7 € R>o}. Then Pdim(U) = O(logn).

Proof. On a fixed problem instance (V,d), as we vary 7, there are at most n? distinct values of
7 at which the graph may change, corresponding to distinct values of {d(z1,z;) | z;,z; € V}.
The utility (the min-cut, and therefore the accuracy of the min-cut algorithm) is fixed once the
graph is fixed. Thus, the dual utility function u, is piecewise constant with O(n?) pieces. Thus,
Pdim(U) = O(log n), using a lemma from an earlier lecture. O

It turns out that the above pseudo-dimension bound is tight up to constants. That is, one can also
show a lower bound 2(logn). We will see lower bounds in a later lecture.

1.2 Weighted graphs using polynomial or exponential kernels

A more refined (and empirically often better) approach is to create a weighted graph. As before,
the problem instance consists of a set of nodes V' and a distance metric d(-,-) defined over pairs of
nodes.

One way to create a weighted similarity graph is to use a polynomial kernel, w(z;, z;) = (W + a)
R

for some fixed positive integer k& and hyperparameter . A more popular approach is to use the
Gaussian kernel (also called the Radial Basis Function or RBF kernel),
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w(x;, xj) = exp (— 2

with bandwidth hyperparameter o. The analysis is similar in either case, so we will focus on the

RBF kernel.

Let u,(V,d) denote the fraction of points labeled correctly when we construct the weighted graph
via the Gaussian kernel with bandwidth parameter o, and label the unlabeled nodes using the
min-cut approach.

Theorem 2. Let U = {i,(-,-) | 0 € Rso}. Then Pdim(U) = O(n).

Proof. Fix a problem instance (V,d). We will show that the dual utility function @y, is piecewise
constant with O(n?22") pieces. For a pair of cuts, C; and Cy, we have the following condition



comparing the weight of their edges

Z w(x;, xj) < w(zk, 1),

(zi,27)€8(C1) (k1) €5(Ca)

where §(C) denote the set of edges across the cut C. Setting y = exp(—1/c?), gives us an expo-
nential inequation in y of the form

> oyt <o,
%

where the sum consists of at most (g) edges. We care about the critical points y (which corresponds
to critical points o) where the above holds with equality, as the set of points where the min-cut
may change is contained within the set of these critical points. To this end, we have the following
lemma on the number of real solutions of exponential equations.

Lemma 1. The equation >, a;e”

z € R.

i =0 where 0 # a;,b; € R has at most n — 1 distinct solutions

Proof. We will use induction on n. It is easy to verify that there is no solution for n = 1. We
assume the statement holds for all 1 <n < N. Consider the equation ¢n11(z) = vaz 4{1 a;eb® = 0.

Since a1 # 0, we can write

N+1 N+1
dny1(x Z ;e = a e (1 + Z i o(bi=br)a > =: a1e”” (1 +g(z)).

By our induction hypothesis, ¢’(0) = 0 has at most N — 1 solutions, and so (1+ g(z))" has at most
N — 1 roots. By Rolle’s theorem, (1 + g(x)) has at most N roots, and therefore ¢n11(x) = 0 has
at most IV solutions. O

For polynomial kernels, we can establish a similar lemma (using the above argument or by the
Descartes’ rules of signs). Using the above lemma, across all pairs of cuts C, Co, we have at most
(g) . (2; ) distinct critical points. The utility (the min-cut and therefore its accuracy) is fixed over
any interval induced by these critical points. Thus, the dual utility function u, is piecewise constant

with O(n?2") pieces. Therefore, Pdim(U) = O(n). O

As it turns out, this bound on the pseudo-dimension of the utility function for the exponential
kernel is tight as well (up to constants).

2 Linear Regression

We will now turn our attention to a fundamental algorithm in machine learning, statistics and data
science, namely Least Squares Regression. Given a feature matrix X € R™*? and the corresponding
real-valued labels y € R", ordinary least squares (OLS) is given by the following convex optimization
problem,



.1 2
min —||Xw — .
min, 2| Xw |
Here each row of X corresponds to a d-dimensional feature vector for a single datapoint. w is
essentially the best linear fit for the data, and should result in a small validation loss (X', ') =
21 X"w — /||? on unseen data X',y for the same problem/task.

To avoid overfitting the training set, and for additional useful properties like feature selection, one
often adds some regularization penalty to the OLS objective, typically in terms of the L,-norm of
w, say for p=1 or p = 2.

2.1 Ridge Regression

We will first look at adding the Lo penalty, which is popularly known as ridge regression. Here the
optimization problem has a regularization penalty hyperparameter \o.

1
min - || Xw — y||? + \o||lw]|2.
i {1 Xw =y + Xl

A problem instance is given by a tuple (X, y, X’,¢/) such that we find the best w)y, by solving the
(regularized) optimization problem on the training split (X,y), and evaluate the learned w), on
the validation split (X', ¢/), that is £, (X', ') = 4[| X wy, — ¢/[|*.

We will show that the dual loss function is a rational (ratio of two polynomials in \2) function with
degree at most d.

First, we give another useful tool for analyzing the pseudo-dimension of single parameter utility
function classes (due to Balcan et al, STOC’21).

Lemma 2. A function h : R — R is said to have at most B oscillations if for every z € R, the
function p — lgpp)>2y is piecewise constant with al most B discontinuities. Let U = {u, : I —
R | p € R}, of which each dual function u’(p) for any x € Il has at most B oscillations. Then
Pdim(U) = O(log B).

For example, the constant function has zero oscillations, and a quadratic function has at most two
oscillations.

Proof. On any fixed instance x;, for any fixed threshold r;, the function p — I« (,)>,,1 has at
most B discontinuities by the definition of oscillations and therefore induces at most B+1 intervals
on R. Thus, for m instances, there are at most mB discontinuities across i € [m]. For each of the
< mB+1 intervals, the above-below pattern of all the functions in I/ is fixed. For pseudo-shattering
Z1y. .., Tm, we must have 2™ < mB + 1, which implies m = O(log B). O

We will now use this to analyze the family of ridge regression algorithms parameterized by As.

Theorem 3. Let Lo = {{),(-,") | A2 € Ry}. Then Pdim(Ls2) = O(logd).



Proof. The unique solution to the ridge regression optimization, for any Ay > 0, is given by
wy, = (XTX + X)X Ty,

This may be seen by setting the gradient w.r.t. w to zero and solving for w.
We now have the following simple lemma.
Lemma 3. Let A be an r x s matriz. Consider the matriv B(\) = (ATA + M )™! and X > 0.

FEach entry of B(X) is a rational polynomial Pi;(X)/Q(X) for i,j € [s] with each P;; of degree at
most s — 1, and Q of degree s.

Proof. Let G = AT A be the Gramian matrix. G is symmetric and therefore diagonalizable, and
the diagonalization gives the eigendecomposition G = EAE~!. Thus we have

(ATA+ ML) ™' = (EAET' + \EE™ )™ = E(A+ \L,)'E™!

But A is the diagonal matrix diag(Aj1, .. ., Ass), and therefore (A+AI5) ™1 = diag((A11+A) 7L, ..., (Ags+
A)~1). This implies the desired characterization, with Q(X) = ILi¢[sj(As + A) and

S

* Eip(E~ Y, B
Py =@ 2 M = (BB i Miis (Aii + 1)) -
k=1 k=1

O]

Each entry of wy, is therefore a rational function of the form P;(\)/Q()\) with each P; of degree at
most d — 1, and @ of degree d.
Now the validation loss ]

EAQ(X/J/) = §||X/w>\2 - y/H2

is a rational function of Ao with degree at most 2d. This implies that the dual validation loss
function for any fixed instance (X, y, X’,3) has at most 2d oscillations. Lemma [2| now implies the
result. O

2.2 LASSO Regression

We will now look at L; penalty, which is popularly known as LASSO regression. Here the opti-
mization problem has a regularization penalty hyperparameter A;.

1 2
min —|| Xw — + Af|wl]|1.
min, o] ylI” + Atllwlly
In this case, we have the following piecewise structure of the dual validation loss function ¢), under
a “general position” assumption that follows by applying the KKT optimality conditions to the
above optimization problem.



Lemma 4. Let X¢ denote the submatriz of X where only the columns corresponding to the subset
of features € C [d] are retained. We assume that X} X¢ is invertible for each & C [d). Then the
dual loss function on any fized instance (X,y, X',y') is piecewise quadratic with at most 3¢ pieces,
where each piece corresponds to a solution wy, of the form

wie = (XEXe) N XEy — Mis), wy [qpe =0,

where € C [d] is the set of non-zero coefficients of wy,, and s is the sign vector {—1, 1}l

We can use this lemma to establish the following bound on the pseudo-dimension.

Theorem 4. Let L1 = {l),(-,-) | \1 € Ry}. Then Pdim(L;) = O(d).

Proof. We will use the above piecewise structure and the general result for piecewise decomposable
functions from the last lecture. The pseudo-dimension of the quadratic piece functions is O(1) (con-
stant number of oscillations, so we can use Lemma and the VC dimension of the one-dimensional
linear thresholds is O(1). Moreover, we have at most 3% — 1 critical points (corresponding to distinct
boundary functions). Thus, Pdim(£;) = O(1 + 1 - log 3¢) = O(d). O

Turns out this bound on the pseudo-dimension of LASSO loss is also asymptotically tight.
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