
TTIC 31290: Machine Learning for Algorithm Design (Fall 2025)

Avrim Blum and Dravyansh Sharma

Lecture 1: 09/30/25 Lecturer: Avrim Blum

Outline for today

• Course overview

• Approximation algorithms overview

• Case study #1: k-center clustering

• Case study #2: Set cover

• Case study #3: Vertex cover

1 Course Overview

[See material on course webpage]

2 Approximation Algorithms Overview

Many computational problems we’d like to solve are NP-hard, so we don’t expect to be able to
find an algorithm that can optimally solve arbitrary instances in polynomial time. [If needed: brief
discussion of polynomial time, NP-hardness] One classic approach to addressing this is to study
approximation algorithms.

We say an algorithm is an α-approximation for a minimization problem Π if for any instance I,
the algorithm finds a solution of size at most α times the minimum. We say an algorithm is an
α-approximation for a maximization problem Π if for any instance I, the algorithm finds a solution
of size at least α times the maximum.

3 Case study #1: k-center clustering

Given n points x1, . . . , xn in a metric space M , the goal of k-center clustering is to find k “cluster
centers” c1, . . . , ck ∈ M that minimize:

max
i

min
j

d(xi, cj)

i.e., minimize the maximum distance between any xi and its nearest cluster center. Equivalently,
we want to find centers c1, . . . , ck such that the balls of radius r around each center contain all the
xi’s, for r as small as possible.

This problem is NP-hard, but there is a simple algorithm that gives a 2-approximation (i.e., if r∗

is the minimum possible radius, then this finds a solution that works with radius 2r∗).

1



Algorithm (Farthest Point Algorithm)

1. Pick c1 = x1 (or any of the xi; it doesn’t matter).

2. Pick c2 to be the point xi that is farthest from c1.

3. For j = 3, . . . , k, pick cj to be the point xi that is farthest from {c1, . . . , cj−1}, specifically:

cj = argmax
xi

min
j′<j

d(xi, cj′)

Theorem 1. The Farthest Point Algorithm is a 2-approximation for the k-center problem.

Proof. Let r be the radius of the solution found by the algorithm:

r = max
i

min
j

d(xi, cj)

Let xi = argmaximinj d(xi, cj). Notice that the k + 1 points {c1, c2, . . . , ck, xi} all have distance
at least r from each other [do you see why?]. This means there cannot exist a solution with radius
r∗ < r/2. Indeed, any ball of radius less than r/2 cannot contain more than one of these k + 1
points (by the triangle inequality), and so there is no way to cover all k+1 points with only k such
balls.

Note: it is NP-hard to get any constant approximation less than 2.

4 Case study #2: Set Cover

The set cover problem is defined as follows: you have a universe X of n points {x1, . . . , xn} and m
subsets S1, . . . , Sm ⊆ X. Assume that each xi is in at least one subset Sj . You want to find the
fewest subsets needed to cover all of X.

Notice that set cover is very similar to k-center clustering if instead of approximately minimizing
the radius r, you fix r and aim to approximately minimize the number of centers. In particular,
given a k-center problem in a finite metric space M with m total points, we can create one set for
each ball of radius r around a point in M . In the other direction, given a set cover instance, we
can create a bipartite graph with x1, . . . , xn on one side and S1, . . . , Sm on the other, with an edge
of length 1 between xi and Sj if Sj contains xi, and then look at r = 1 in the shortest-path metric.

Set cover is NP-hard, but there is an O(log n)-approximation.

Greedy algorithm for set cover

Until done, choose the set that covers the most new points.

Theorem 2. The greedy algorithm is an O(log n)-approximation for set cover.

2



Proof. Let k be the size of the minimum set cover. At any step, there must be at least one available
set that covers at least a 1/k fraction of the points remaining. Thus, the algorithm chooses one
that covers at least this fraction. After t steps, the number of uncovered points is at most:

n

(
1− 1

k

)t

Using (1 + x) ≤ ex (true for all x, equality at x = 0), we have:

n

(
1− 1

k

)t

≤ ne−t/k

After t = k ln(n/k) steps, at most k points remain; after at most k more steps we are done. So the
total number of sets chosen is at most:

k
[
1 + ln

(n
k

)]
= O(k log n)

Note: It is NP-hard to get even a (1− ε) lnn-approximation, for any constant ε > 0.

5 Case study #3: Vertex Cover

The vertex cover problem is: given a graph G, find the fewest vertices needed to cover all the edges
(i.e., pick at least one endpoint of every edge). Vertex cover is a special case of set cover: each edge
is an “item” and each vertex is a set covering the edges it touches.

The greedy set cover algorithm, if applied to vertex cover, corresponds to picking the vertex cov-
ering the most new edges, giving an O(log n)-approximation. However, there is a different greedy
algorithm that gives a 2-approximation.

Greedy algorithm for vertex cover

Until done, find an uncovered edge and choose both endpoints.

Theorem 3. This algorithm is a 2-approximation for vertex cover.

Proof. Let e1, e2, . . . , ek be the edges chosen in sequence. The algorithm picks 2k vertices. These
edges share no endpoints, because each ei is uncovered after choosing endpoints of previous edges.
Any vertex cover must include at least one endpoint from each ei, so it must have size at least k.
Thus the algorithm’s solution is at most twice optimal.

Note: It is UGC-hard to approximate vertex cover within any factor better than 2− ε.

3



6 Additional Resources

• Julia Chuzhoy’s Approximation Algorithms course. https://canvas.uchicago.edu/courses/
51962

• Chandra Chekuri’s Approximation Algorithms course. https://courses.grainger.illinois.
edu/cs598csc/sp2011/

4

https://canvas.uchicago.edu/courses/51962
https://canvas.uchicago.edu/courses/51962
https://courses.grainger.illinois.edu/cs598csc/sp2011/
https://courses.grainger.illinois.edu/cs598csc/sp2011/

	Course Overview
	Approximation Algorithms Overview
	Case study #1: k-center clustering
	Case study #2: Set Cover
	Case study #3: Vertex Cover
	Additional Resources

