TTIC 31290: Machine Learning for Algorithm Design (Fall 2025)
Avrim Blum and Dravyansh Sharma

Lecture 1: 09/30/25 Lecturer: Avrim Blum

Outline for today

e Course overview

e Approximation algorithms overview

Case study #1: k-center clustering
Case study #2: Set cover
Case study #3: Vertex cover

1 Course Overview

[See material on course webpage]

2 Approximation Algorithms Overview

Many computational problems we’d like to solve are NP-hard, so we don’t expect to be able to
find an algorithm that can optimally solve arbitrary instances in polynomial time. [If needed: brief
discussion of polynomial time, NP-hardness] One classic approach to addressing this is to study
approximation algorithms.

We say an algorithm is an a-approximation for a minimization problem II if for any instance I,
the algorithm finds a solution of size at most « times the minimum. We say an algorithm is an
a-approximation for a mazimization problem II if for any instance I, the algorithm finds a solution
of size at least a times the maximum.

3 Case study #1: k-center clustering

Given n points z1,...,T, in a metric space M, the goal of k-center clustering is to find k “cluster
centers” ci,...,cr € M that minimize:
max min d(x;, ¢;)
i
i.e., minimize the maximum distance between any x; and its nearest cluster center. Equivalently,
we want to find centers ¢y, ..., ¢, such that the balls of radius r around each center contain all the
x;’s, for r as small as possible.

*

This problem is NP-hard, but there is a simple algorithm that gives a 2-approximation (i.e., if r
is the minimum possible radius, then this finds a solution that works with radius 2r*).



Algorithm (Farthest Point Algorithm)

1. Pick ¢; = x;1 (or any of the xz;; it doesn’t matter).
2. Pick ¢y to be the point z; that is farthest from c;.
3. For j =3,...,k, pick ¢; to be the point z; that is farthest from {c1,...,cj_1}, specifically:

¢j = argmaxmind(z;, ¢jr)
@i j'<j

Theorem 1. The Farthest Point Algorithm is a 2-approximation for the k-center problem.

Proof. Let r be the radius of the solution found by the algorithm:

r = max min d(x;, ¢;)
i
Let z; = arg max; min; d(z;, ¢j). Notice that the k + 1 points {c1,c2,...,cx, x;} all have distance
at least r from each other [do you see why?]. This means there cannot exist a solution with radius
r* < r/2. Indeed, any ball of radius less than r/2 cannot contain more than one of these k + 1

points (by the triangle inequality), and so there is no way to cover all £+ 1 points with only &k such
balls. O

Note: it is NP-hard to get any constant approximation less than 2.

4 Case study #2: Set Cover

The set cover problem is defined as follows: you have a universe X of n points {z1,...,2z,} and m
subsets S1,...,S5, € X. Assume that each x; is in at least one subset S;. You want to find the
fewest subsets needed to cover all of X.

Notice that set cover is very similar to k-center clustering if instead of approximately minimizing
the radius 7, you fix r and aim to approximately minimize the number of centers. In particular,
given a k-center problem in a finite metric space M with m total points, we can create one set for
each ball of radius r around a point in M. In the other direction, given a set cover instance, we
can create a bipartite graph with x1,...,x, on one side and St, ..., S, on the other, with an edge
of length 1 between z; and S; if S; contains x;, and then look at » = 1 in the shortest-path metric.

Set cover is NP-hard, but there is an O(logn)-approximation.

Greedy algorithm for set cover

Until done, choose the set that covers the most new points.

Theorem 2. The greedy algorithm is an O(logn)-approzimation for set cover.



Proof. Let k be the size of the minimum set cover. At any step, there must be at least one available
set that covers at least a 1/k fraction of the points remaining. Thus, the algorithm chooses one
that covers at least this fraction. After ¢ steps, the number of uncovered points is at most:

(-1

Using (1 + z) < e” (true for all x, equality at = = 0), we have:

1\
n(lk) gne_t/k

After t = kIn(n/k) steps, at most k points remain; after at most k& more steps we are done. So the
total number of sets chosen is at most:

k [1 +1n (%)} = O(klogn)

Note: It is NP-hard to get even a (1 — ¢) Inn-approximation, for any constant € > 0.

5 Case study #3: Vertex Cover

The vertex cover problem is: given a graph G, find the fewest vertices needed to cover all the edges
(i.e., pick at least one endpoint of every edge). Vertex cover is a special case of set cover: each edge
is an “item” and each vertex is a set covering the edges it touches.

The greedy set cover algorithm, if applied to vertex cover, corresponds to picking the vertex cov-
ering the most new edges, giving an O(logn)-approximation. However, there is a different greedy
algorithm that gives a 2-approximation.

Greedy algorithm for vertex cover

Until done, find an uncovered edge and choose both endpoints.

Theorem 3. This algorithm is a 2-approximation for vertex cover.

Proof. Let e1,eo,...,er be the edges chosen in sequence. The algorithm picks 2k vertices. These
edges share no endpoints, because each e; is uncovered after choosing endpoints of previous edges.
Any vertex cover must include at least one endpoint from each e;, so it must have size at least k.
Thus the algorithm’s solution is at most twice optimal. O

Note: It is UGC-hard to approximate vertex cover within any factor better than 2 — ¢.



6 Additional Resources

e Julia Chuzhoy’s Approximation Algorithms course. https://canvas.uchicago.edu/courses/
51962

e Chandra Chekuri’s Approximation Algorithms course. https://courses.grainger.illinois.
edu/cs598csc/sp2011/


https://canvas.uchicago.edu/courses/51962
https://canvas.uchicago.edu/courses/51962
https://courses.grainger.illinois.edu/cs598csc/sp2011/
https://courses.grainger.illinois.edu/cs598csc/sp2011/

	Course Overview
	Approximation Algorithms Overview
	Case study #1: k-center clustering
	Case study #2: Set Cover
	Case study #3: Vertex Cover
	Additional Resources

