5 Machine Learning

5.1 Introduction

Machine learning algorithms are general purpose tools that solve problems from many
disciplines without detailed domain-specific knowledge. They have proven to be very
effective in a large number of contexts, including computer vision, speech recognition,
document classification, automated driving, computational science, and decision support.

The core problem. A core problem underlying many machine learning applications
is learning a good classification rule from labeled data. This problem consists of a do-
main of interest X', called the instance space, such as email messages or patient records,
and a classification task, such as classifying email messages into spam versus non-spam
or determining which patients will respond well to a given medical treatment. We will
typically assume our instance space X = {0,1}% or X = R¢, corresponding to data that is
described by d Boolean or real-valued features. Features for email messages could be the
presence or absence of various types of words, and features for patient records could be
the results of various medical tests. To perform the learning task, our learning algorithm
is given a set S of labeled training eramples, which are points in X along with their
correct classification. This training data could be a collection of email messages, each
labeled as spam or not spam, or a collection of patients, each labeled by whether or not
they responded well to the given medical treatment. Our algorithm then aims to use the
training examples to produce a classification rule that will perform well over new data.
A key feature of machine learning, which distinguishes it from other algorithmic tasks, is
that our goal is generalization: to use one set of data in order to perform well on new data
we have not seen yet. We focus on binary classification where items in the domain of inter-
est are classified into two categories, as in the medical and spam-detection examples above.

How to learn. A high-level approach to solving this problem that many algorithms
we discuss will follow is to try to find a “simple” rule with good performance on the
training data. For instance in the case of classifying email messages, we might find a set
of highly indicative words such that every spam email in the training data has at least
one of these words and none of the non-spam emails has any of them; in this case, the
rule “if the message has any of these words then it is spam, else it is not” would be a
simple rule that performs well on the training data. Or, we might find a way of weighting
words with positive and negative weights such that the total weighted sum of words in
the email message is positive on the spam emails in the training data, and negative on the
non-spam emails. We will then argue that so long as the training data is representative of
what future data will look like, we can be confident that any sufficiently “simple” rule that
performs well on the training data will also perform well on future data. To make this into
a formal mathematical statement, we need to be precise about what we mean by “simple”
as well as what it means for training data to be “representative” of future data. In fact,
we will see several notions of complexity, including bit-counting and VC-dimension, that

126

will allow us to make mathematical statements of this form. These statements can be
viewed as formalizing the intuitive philosophical notion of Occam’s razor.

Formalizing the problem. To formalize the learning problem, assume there is some
probability distribution D over the instance space X, such that (a) our training set S
consists of points drawn independently at random from D, and (b) our objective is to
predict well on new points that are also drawn from D. This is the sense in which we
assume that our training data is representative of future data. Let ¢*, called the target
concept, denote the subset of X' corresponding to the positive class for the binary classifi-
cation we are aiming to make. For example, ¢* would correspond to the set of all patients
who respond well to the treatment in the medical example, or the set of all spam emails
in the spam-detection setting. So, each point in our training set S is labeled according
to whether or not it belongs to ¢* and our goal is to produce a set h C X, called our
hypothesis, which is close to ¢* with respect to distribution D. The true error of h is
errp(h) = Prob(hAc*) where “A” denotes symmetric difference, and probability mass is
according to D. In other words, the true error of h is the probability it incorrectly clas-
sifies a data point drawn at random from D. Our goal is to produce h of low true error.
The training error of h, denoted errg(h), is the fraction of points in S on which h and
c* disagree. That is, errg(h) = [S N (hAc*)|/|S|. Training error is also called empirical
error. Note that even though S is assumed to consist of points randomly drawn from D,
it is possible for a hypothesis h to have low training error or even to completely agree with
c* over the training sample, and yet have high true error. This is called overfitting the
training data. For instance, a hypothesis h that simply consists of listing the positive ex-
amples in S, which is equivalent to a rule that memorizes the training sample and predicts
positive on an example if and only if it already appeared positively in the training sample,
would have zero training error. However, this hypothesis likely would have high true error
and therefore would be highly overfitting the training data. More generally, overfitting is
a concern because algorithms will typically be optimizing over the training sample. To
design and analyze algorithms for learning, we will have to address the issue of overfitting.

To be able to formally analyze overfitting, we introduce the notion of an hypothesis
class, also called a concept class or set system. An hypothesis class H over X is a collection
of subsets of X', called hypotheses. For instance, the class of intervals over X = R is the
collection {[a,b]|la < b}. The class of linear separators over X = R? is the collection

{{x e RYw -x > wo}|w € RY wy € R};

that is, it is the collection of all sets in R? that are linearly separable from their comple-
ment. In the case that X is the set of 4 points in the plane {(—1, —1), (—1,1), (1, —-1),(1,1)},
the class of linear separators contains 14 of the 2* = 16 possible subsets of X.17 Given an
hypothesis class H and training set S, what we typically aim to do algorithmically is to
find the hypothesis in H that most closely agrees with ¢* over S. To address overfitting,

1"The only two subsets that are not in the class are the sets {(—1,—1),(1,1)} and {(—1,1), (1, —1)}.

127

we argue that if S is large enough compared to some property of H, then with high prob-
ability all h € H have their training error close to their true error, so that if we find a
hypothesis whose training error is low, we can be confident its true error will be low as well.

Before giving our first result of this form, we note that it will often be convenient to
associate each hypotheses with its {—1, 1}-valued indicator function

1 z€h
h(x)_{—l x&h

In this notation the true error of h is errp(h) = Prob,.p[h(z) # ¢*(x)] and the training
error is errg(h) = Prob,.s[h(z) # c*(x)].

5.2 Overfitting and Uniform Convergence

We now present two results that explain how one can guard against overfitting. Given
a class of hypotheses H, the first result states that for any given e greater than zero, so
long as the training data set is large compared to %ln(\’HD, it is unlikely any hypothesis
h € H will have zero training error but have true error greater than e. This means that
with high probability, any hypothesis that our algorithms finds that agrees with the target
hypothesis on the training data will have low true error. The second result states that if
the training data set is large compared to = In(|H|), then it is unlikely that the training
error and true error will differ by more than € for any hypothesis in H. This means that if
we find an hypothesis in ‘H whose training error is low, we can be confident its true error
will be low as well, even if its training error is not zero.

The basic idea is the following. If we consider some h with large true error, and we
select an element x € X at random according to D, there is a reasonable chance that
x will belong to the symmetric difference h/Ac*. If we select a large enough training
sample S with each point drawn independently from X according to D, the chance that
S is completely disjoint from hAAc* will be incredibly small. This is just for a single
hypothesis h but we can now apply the union bound over all h € H of large true error,
when H is finite. We formalize this below.

Theorem 5.1 Let H be an hypothesis class and let € and § be greater than zero. If a
training set S of size

1
n > E(ln\?ﬂ +1In(1/9)),
1s drawn from distribution D, then with probability greater than or equal to 1 —§ every h
in H with with true error errp(h) > € has training error errg(h) > 0. Equivalently, with

probability greater than or equal to 1 — 9, every h € H with training error zero has true
error less than €.

Proof: Let hq, hs,... be the hypotheses in H with true error greater than or equal to e.
These are the hypotheses that we don’t want to output. Consider drawing the sample S

128

Not spam Spam
o\ o\

Ty T2 T3 T4 X5 Tg Ty Tg X9 Tio T11 Ti2 T13 T4 Ti5 Tie emails
{ { {
o 0 0 o0 o0 o0 o0 o0 1 1 1 1 1 1 1 1 target concept

! ! I

010 0 0 0 1 0 1 1 1 0 1 0 1 1 hypothesish;
T T T

Figure 5.1: The hypothesis h; disagrees with the truth in one quarter of the emails. Thus
with a training set |S|, the probability that the hypothesis will survive is (1 — 0.25)!

of size n and let A; be the event that h; is consistent with S. Since every h; has true error

greater than or equal to €
Prob(4;) < (1—¢)™

In other words, if we fix h; and draw a sample S of size n, the chance that h; makes no
mistakes on S is at most the probability that a coin of bias € comes up tails n times in a
row, which is (1 — €)™. By the union bound over all i we have

Prob (U;4;) < [H|(1—¢)".

Using the fact that (1—e¢) < e™¢, the probability that any hypothesis in ‘H with true error
greater than or equal to € has training error zero is at most |#H|e~“". Replacing n by the
sample size bound from the theorem statement, this is at most |H|e~ ™ HI=n(1/9) = § ag
desired.]

The conclusion of Theorem 5.1 is sometimes called a “PAC-learning guarantee” since
it states that if we can find an h € H consistent with the sample, then this A is Probably
Approximately Correct.

Theorem 5.1 addressed the case where there exists a hypothesis in ‘H with zero train-
ing error. What if the best h; in H has 5% error on S? Can we still be confident that its
true error is low, say at most 10%? For this, we want an analog of Theorem 5.1 that says
for a sufficiently large training set S, every h; € H has training error within +e of the
true error with high probability. Such a statement is called uniform convergence because
we are asking that the training set errors converge to their true errors uniformly over all
sets in H. To see intuitively why such a statement should be true for sufficiently large
S and a single hypothesis h;, consider two strings that differ in 10% of the positions and
randomly select a large sample of positions. The number of positions that differ in the
sample will be close to 10%.

To prove uniform convergence bounds, we use a tail inequality for sums of independent

Bernoulli random variables (i.e., coin tosses). The following is particularly convenient and
is a variation on the Chernoff bounds in Section 12.4.11 of the appendix.

129

Theorem 5.2 (Hoeffding bounds) Let z1,xs,. .., x, be independent {0, 1}-valued ran-
dom variables with probability p that x; equals one. Let s = . x; (equivalently, flip n
coins of bias p and let s be the total number of heads). For any 0 < o < 1,

—2na?

Prob(s/n > p+ «) e

<
Prob(s/n <p—a) <

6—2n0c2.

Theorem 5.2 implies the following uniform convergence analog of Theorem 5.1.

Theorem 5.3 (Uniform convergence) Let H be a hypothesis class and let € and 6 be
greater than zero. If a training set S of size

1
n > @(ln]"ﬂ\ +In(2/4)),
18 drawn from distribution D, then with probability greater than or equal to 1 — 9, every h
in H satisfies |errg(h) —errp(h)| < e.

Proof: First, fix some h € H and let x; be the indicator random variable for the event
that h makes a mistake on the j example in S. The z; are independent {0,1} random
variables and the probability that x; equals 1 is the true error of h, and the fraction of the
x;’s equal to 1 is exactly the training error of h. Therefore, Hoeffding bounds guarantee
that the probability of the event A, that |errp(h) — errg(h)| > € is less than or equal to
2e2ne?, Applying the union bound to the events A, over all h € H, the probability that
there ezists an h € H with the difference between true error and empirical error greater
than e is less than or equal to 2|#|e~2" Using the value of n from the theorem statement,
the right-hand-side of the above inequality is at most § as desired.]

Theorem 5.3 justifies the approach of optimizing over our training sample S even if we
are not able to find a rule of zero training error. If our training set S is sufficiently large,
with high probability, good performance on S will translate to good performance on D.

Note that Theorems 5.1 and 5.3 require || to be finite in order to be meaningful.
The notion of growth functions and VC-dimension in Section 5.9, extend Theorem 5.3 to
certain infinite hypothesis classes.

5.3 Illustrative Examples and Occam’s Razor

We now present some examples to illustrate the use of Theorem 5.1 and 5.3 and also
use these theorems to give a formal connection to the notion of Occam’s razor.
5.3.1 Learning Disjunctions

Consider the instance space X = {0,1}¢ and suppose we believe that the target concept
can be represented by a disjunction (an OR) over features, such as ¢* = {z|z; = 1V, =

130

1V xg = 1}, or more succinctly, ¢* = 1 Va4V xg. For example, if we are trying to predict
whether an email message is spam or not, and our features correspond to the presence
or absence of different possible indicators of spam-ness, then this would correspond to
the belief that there is some subset of these indicators such that every spam email has at
least one of them and every non-spam email has none of them. Formally, let H denote
the class of disjunctions, and notice that |H| = 2¢. So, by Theorem 5.1, it suffices to find
a consistent disjunction over a sample S of size

15| = %(dln(2) +In(1/8)).

How can we efficiently find a consistent disjunction when one exists? Here is a simple
algorithm.

Simple Disjunction Learner: Given sample S, discard all features that are set to 1 in
any negative example in S. Output the concept h that is the OR of all features that remain.

Lemma 5.4 The Simple Disjunction Learner produces a disjunction h that is consis-
tent with the sample S (i.e., with errg(h) = 0) whenever the target concept is indeed a
disjunction.

Proof: Suppose target concept c¢* is a disjunction. Then for any z; that is listed in ¢*,
x; will not be set to 1 in any negative example by definition of an OR. Therefore, h will
include x; as well. Since h contains all variables listed in c¢*, this ensures that h will
correctly predict positive on all positive examples in S. Furthermore, h will correctly
predict negative on all negative examples in S since by design all features set to 1 in any
negative example were discarded. Therefore, h is correct on all examples in S.]

Thus, combining Lemma 5.4 with Theorem 5.1, we have an efficient algorithm for
PAC-learning the class of disjunctions.

5.3.2 Occam’s Razor

Occam’s razor is the notion, stated by William of Occam around AD 1320, that in general
one should prefer simpler explanations over more complicated ones.!® Why should one
do this, and can we make a formal claim about why this is a good idea? What if each of
us disagrees about precisely which explanations are simpler than others? It turns out we
can use Theorem 5.1 to make a mathematical statement of Occam’s razor that addresses
these issues.

First, what do we mean by a rule being “simple”? Let’s assume that each of us has
some way of describing rules, using bits (since we are computer scientists). The methods,
also called description languages, used by each of us may be different, but one fact we can

18The statement more explicitly was that “Entities should not be multiplied unnecessarily.”

131

Figure 5.2: A decision tree with three internal nodes and four leaves. This tree corresponds
to the Boolean function #12%2 V 12923 V 22T3.

say for certain is that in any given description language, there are at most 2° rules that
can be described using fewer than b bits (because 1 +2+4 + ...+ 2°"1 < 2°). Therefore,
by setting H to be the set of all rules that can be described in fewer than b bits and
plugging into Theorem 5.1, yields the following:

Theorem 5.5 (Occam’s razor) Fiz any description language, and consider a training
sample S drawn from distribution D. With probability at least 1 — 6, any rule h consistent
with S that can be described in this language using fewer than b bits will have errp(h) < e
for |S] = 1[bIn(2) + In(1/6)]. Equivalently, with probability at least 1 — 6, all rules that
can be described in fewer than b bits will have errp(h) < W'

For example, using the fact that In(2) < 1 and ignoring the low-order In(1/§) term, this
means that if the number of bits it takes to write down a rule consistent with the training
data is at most 10% of the number of data points in our sample, then we can be confident
it will have error at most 10% with respect to D. What is perhaps surprising about this
theorem is that it means that we can each have different ways of describing rules and yet
all use Occam’s razor. Note that the theorem does not say that complicated rules are
necessarily bad, or even that given two rules consistent with the data that the complicated
rule is necessarily worse. What it does say is that Occam’s razor is a good policy in that
simple rules are unlikely to fool us since there are just not that many simple rules.

5.3.3 Application: Learning Decision Trees

One popular practical method for machine learning is to learn a decision tree; see Figure
5.2. While finding the smallest decision tree that fits a given training sample S is NP-
hard, there are a number of heuristics that are used in practice.!® Suppose we run such
a heuristic on a training set S and it outputs a tree with k nodes. Such a tree can be

19For instance, one popular heuristic, called ID3, selects the feature to put inside any given node v
by choosing the feature of largest information gain, a measure of how much it is directly improving
prediction. Formally, using S, to denote the set of examples in S that reach node v, and supposing that
feature x; partitions S, into SO and S} (the examples in S, with ; = 0 and x; = 1, respectively), the

132

described using O(klogd) bits: log,(d) bits to give the index of the feature in the root,
O(1) bits to indicate for each child if it is a leaf and if so what label it should have, and
then O(kr logd) and O(kpglogd) bits respectively to describe the left and right subtrees,
where kj, is the number of nodes in the left subtree and kg is the number of nodes in the
right subtree. So, by Theorem 5.5, we can be confident the true error is low if we can
produce a consistent tree with fewer than €|S|/log(d) nodes.

5.4 Regularization: Penalizing Complexity

Theorems 5.3 and 5.5 suggest the following idea. Suppose that there is no simple rule
that is perfectly consistent with the training data, but we notice there are very simple
rules with training error 20%, say, and then some more complex rules with training error
10%, and so on. In this case, perhaps we should optimize some combination of training er-
ror and simplicity. This is the notion of reqularization, also called complexity penalization.

Specifically, a reqularizer is a penalty term that penalizes more complex hypotheses.
Given our theorems so far, a natural measure of complexity of a hypothesis is the number
of bits we need to write it down.?’ Consider now fixing some description language, and let
H; denote those hypotheses that can be described in 4 bits in this language, so |H;| < 2°.
Let 6; = §/2°. Rearranging the bound of Theorem 5.3, we know that with probability at

least 1 — 9;, all h € H; satisty errp(h) < errg(h) + ,/W. Now, applying the
union bound over all 7, using the fact that 6; + ds + 03 + ... = 9, and also the fact that

In(|H;|) + In(2/6;) < iln(4) + In(2/4), gives the following corollary.

Corollary 5.6 Fiz any description language, and consider a training sample S drawn
from distribution D. With probability greater than or equal to 1 — &, all hypotheses h
satisfy

size(h)In(4) + 1In(2/9)
errp(h) < errg(h)+ \/ 209]

where size(h) denotes the number of bits needed to describe h in the given language.

Corollary 5.6 gives us the tradeoff we were looking for. It tells us that rather than
searching for a rule of low training error, we instead may want to search for a rule with
a low right-hand-side in the displayed formula. If we can find one for which this quantity
is small, we can be confident true error will be low as well.

information gain of z; is defined as: Ent(S,) — [Iggl Ent(S9) + }gilEnt(S},)] Here, Ent(S’) is the binary

entropy of the label proportions in set S’; that is, if a p fraction of the examples in S’ are positive, then
Ent(S") = plogy(1/p) + (1 —p)logy(1/(1 —p)), defining 0log,(0) = 0. This then continues until all leaves
are pure—they have only positive or only negative examples.

20Later we will see support vector machines that use a regularizer for linear separators based on the
margin of separation of data.

133

5.5 Online Learning and the Perceptron Algorithm

So far we have been considering what is often called the batch learning scenario. You are
given a “batch” of data—the training sample S—and your goal is to use it to produce
a hypothesis h that will have low error on new data, under the assumption that both S
and the new data are sampled from some fixed distribution D. We now switch to the
more challenging online learning scenario where we remove the assumption that data is
sampled from a fixed probability distribution, or from any probabilistic process at all.

Specifically, the online learning scenario proceeds as follows. At each timet =1,2,...:

1. The algorithm is presented with an arbitrary example z; € X and is asked to make
a prediction ¢, of its label.

2. The algorithm is told the true label of the example ¢*(x;) and is charged for a
mistake if ¢*(z;) # 4.

The goal of the learning algorithm is to make as few mistakes as possible in total. For
example, consider an email classifier that when a new email message arrives must classify
it as “important” or “it can wait”. The user then looks at the email and informs the
algorithm if it was incorrect. We might not want to model email messages as independent
random objects from a fixed probability distribution, because they often are replies to
previous emails and build on each other. Thus, the online learning model would be more
appropriate than the batch model for this setting.

Intuitively, the online learning model is harder than the batch model because we have
removed the requirement that our data consists of independent draws from a fixed proba-
bility distribution. Indeed, we will see shortly that any algorithm with good performance
in the online model can be converted to an algorithm with good performance in the batch
model. Nonetheless, the online model can sometimes be a cleaner model for design and
analysis of algorithms.

5.5.1 An Example: Learning Disjunctions

As a simple example, let’s revisit the problem of learning disjunctions in the online model.
We can solve this problem by starting with a hypothesis h = x; V23 V...V 24 and using
it for prediction. We will maintain the invariant that every variable in the target disjunc-
tion is also in our hypothesis, which is clearly true at the start. This ensures that the
only mistakes possible are on examples x for which h(z) is positive but ¢*(z) is negative.
When such a mistake occurs, we simply remove from h any variable set to 1 in x. Since
such variables cannot be in the target function (since x was negative), we maintain our
invariant and remove at least one variable from h. This implies that the algorithm makes
at most d mistakes total on any series of examples consistent with a disjunction.

134

In fact, we can show this bound is tight by showing that no deterministic algorithm
can guarantee to make fewer than d mistakes.

Theorem 5.7 For any deterministic algorithm A there exists a sequence of examples o
and disjunction c¢* such that A makes at least d mistakes on sequence o labeled by c*.

Proof: Let o be the sequence ey, e, . . ., g where e; is the example that is zero everywhere
except for a 1 in the jth position. Imagine running A on sequence ¢ and telling A it made
a mistake on every example; that is, if A predicts positive on e; we set c*(e;) = —1 and if
A predicts negative on e; we set ¢*(e;) = +1. This target corresponds to the disjunction
of all z; such that A predicted negative on e;, so it is a legal disjunction. Since A is
deterministic, the fact that we constructed ¢* by running A is not a problem: it would
make the same mistakes if re-run from scratch on the same sequence and same target.
Therefore, A makes d mistakes on this o and c*. B

5.5.2 The Halving Algorithm

If we are not concerned with running time, a simple algorithm that guarantees to make at
most log,(|#|) mistakes for a target belonging to any given class H is called the halving
algorithm. This algorithm simply maintains the version space ¥V C H consisting of all
h € H consistent with the labels on every example seen so far, and predicts based on
majority vote over these functions. Each mistake is guaranteed to reduce the size of the
version space V by at least half (hence the name), thus the total number of mistakes is
at most log,(|H]). Note that this can be viewed as the number of bits needed to write a
function in ‘H down.

5.5.3 The Perceptron Algorithm

The Perceptron algorithm is an efficient algorithm for learning a linear separator in d-
dimensional space, with a mistake bound that depends on the margin of separation of
the data. Specifically, the assumption is that the target function can be described by a
vector w* such that for each positive example x we have x”w* > 1 and for each negative
example x we have x’w* < —1. Note that if we think of the examples x as points in
space, then x?w*/|w*| is the distance of x to the hyperplane x’w* = 0. Thus, we can
view our assumption as stating that there exists a linear separator through the origin
with all positive examples on one side, all negative examples on the other side, and all
examples at distance at least v = 1/|w*| from the separator. This quantity ~ is called
the margin of separation (see Figure 5.3).

The guarantee of the Perceptron algorithm will be that the total number of mistakes is
at most (R/v)? where R = max; |x;| over all examples x; seen so far. Thus, if there exists
a hyperplane through the origin that correctly separates the positive examples from the
negative examples by a large margin relative to the radius of the smallest ball enclosing

135

Figure 5.3: Margin of a linear separator.

the data, then the total number of mistakes will be small. The algorithm is very simple
and proceeds as follows.

The Perceptron Algorithm: Start with the all-zeroes weight vector w = 0. Then, for
t=1,2,... do:

1. Given example x;, predict sgn(x! w).

2. If the prediction was a mistake, then update:

(a) If x; was a positive example, let w < w + x;.

(b) If x; was a negative example, let w < w — x;.

While simple, the Perceptron algorithm enjoys a strong guarantee on its total number
of mistakes.

Theorem 5.8 On any sequence of examples X1,Xa, ..., if there exists a vector w* such
that xI'w* > 1 for the positive ezamples and xI w* < —1 for the negative examples (i.e.,
a linear separator of margin v = 1/|w*|), then the Perceptron algorithm makes at most
R?*|w*|? mistakes, where R = max; |xy|.

To get a feel for this bound, notice that if we multiply all entries in all the x; by 100, we
can divide all entries in w* by 100 and it will still satisfy the “if” condition. So the bound
is invariant to this kind of scaling, i.e., to what our “units of measurement” are.

Proof of Theorem 5.8: Fix some consistent w*. We will keep track of two quantities,
wlw* and |w|?. First of all, each time we make a mistake, w/ w* increases by at least 1.
That is because if x; is a positive example, then

(w+x) ' w =ww +xiw" >wiw"+1,

136

by definition of w*. Similarly, if x; is a negative example, then

T T

(w — Xt)TW* =ww —x,w> wliw* + 1.
Next, on each mistake, we claim that |w|? increases by at most R?. Let us first consider
mistakes on positive examples. If we make a mistake on a positive example x; then we
have

(W +x) (W + %) = [w]* + 25w + [x* < [wl” + [[* < |w|* + R?,

where the middle inequality comes from the fact that we made a mistake, which means
that x!'w < 0. Similarly, if we make a mistake on a negative example x; then we have
(w—x)"(w—x;) = |[w|]* = 2xI'w + |x,|* < |[w|* + |x|* < |[wW]* + R%

Note that it is important here that we only update on a mistake.

So, if we make M mistakes, then w/w* > M, and |w|?> < MR? or equivalently,
|lw| < RV M. Finally, we use the fact that w’w*/|w*| < |w| which is just saying that
the projection of w in the direction of w* cannot be larger than the length of w. This
gives us:

M/lw*| < RVM
vM < Rw"|
M S RQ’W*‘Q
as desired.]

5.5.4 Extensions: Inseparable Data and Hinge Loss

We assumed above that there existed a perfect w* that correctly classified all the exam-
ples, e.g., correctly classified all the emails into important versus non-important. This
is rarely the case in real-life data. What if even the best w* isn’t quite perfect? We
can see what this does to the above proof: if there is an example that w* doesn’t cor-
rectly classify, then while the second part of the proof still holds, the first part (the dot
product of w with w* increasing) breaks down. However, if this doesn’t happen too of-
ten, and also x! w* is just a “little bit wrong” then we will only make a few more mistakes.

To make this formal, define the hinge-loss of w* on a positive example x; as max(0, 1 —
xI'w*). In other words, if x! w* > 1 as desired then the hinge-loss is zero; else, the hinge-
loss is the amount the LHS is less than the RHS.?! Similarly, the hinge-loss of w* on a
negative example x; is max(0, 1 +x! w*). Given a sequence of labeled examples S, define
the total hinge-loss Lpnge(W*, S) as the sum of hinge-losses of w* on all examples in S.

We now get the following extended theorem.

21 This is called “hinge-loss” because as a function of x! w* it looks like a hinge.

137

Theorem 5.9 On any sequence of eramples S = Xy,Xa,..., the Perceptron algorithm

makes at most
mi*n (R2|W*|2 + 2Lhinge (W*a S))

mistakes, where R = max; |Xy|.

Proof: As before, each update of the Perceptron algorithm increases |[w|* by at most R?
so if the algorithm makes M mistakes, we have |w|? < M R2.

What we can no longer say is that each update of the algorithm increases w’w* by
at least 1. Instead, on a positive example we are “increasing” w’w* by x!w* (it could
be negative), which is at least 1 — Lynge(W*,x;). Similarly, on a negative example we
“increase” w!w* by —XtTW*, which is also at least 1 — Lpipge(W*,x;). If we sum this up
over all mistakes, we get that at the end we have w/w* > M — Lipinge(w*, S), where we
are using here the fact that hinge-loss is never negative so summing over all of S is only
larger than summing over the mistakes that w made.

Finally, we just do some algebra. Let L = Ljng.(W*,.S). So we have:

wiw'/|lw'| < |wl
(WTW*)Q < |W|2|W*|2
(M —L)? < MRYw*?
M? —2ML+L* < MR*|w*|?
M —2L+L*/M < R*)w*|?
M < RIwW*|*+2L-L*/M < R*}w*|*+2L
as desired. -

5.6 Kernel Functions

What if even the best w* has high hinge-loss? E.g., perhaps instead of a linear separator
decision boundary, the boundary between important emails and unimportant emails looks
more like a circle, for example as in Figure 5.4.

A powerful idea for addressing situations like this is to use what are called kernel
functions, or sometimes the “kernel trick”. Here is the idea. Suppose you have a function
K, called a “kernel”, over pairs of data points such that for some function ¢ : R* — R,
where perhaps N > d, we have K(x,x') = ¢(x)T¢(x’). In that case, if we can write
the Perceptron algorithm so that it only interacts with the data via dot-products, and
then replace every dot-product with an invocation of K, then we can act as if we had
performed the function ¢ explicitly without having to actually compute ¢.

For example, consider K (x,x’) = (1+x7x')* for some integer k > 1. It turns out this
corresponds to a mapping ¢ into a space of dimension N = d*. For example, in the case

138

Figure 5.4: Data that is not linearly separable in the input space R? but that is linearly
separable in the “g-space,” ¢(x) = (1,v2x1, V229, 23, V22129, ¥3), corresponding to the
kernel function K(x'y) = (1 + 2122 + y192)*

d =2,k =2 we have (using z; to denote the ith coordinate of x):

K(X, X/) = (1 + 1'1.’13'/1 + 1'2.1'/2)2
= 142212 + 2x9xh + 22272 + 2wy 200 2, + T3
= o(x)" o(x)

for ¢(x) = (1,v2x1, V2w, 23, V/22175, 23). Notice also that a linear separator in this
space could correspond to a more complicated decision boundary such as an ellipse in
the original space. For instance, the hyperplane ¢(x)’w* = 0 for w* = (—4,0,0,1,0,1)
corresponds to the circle 22 + 23 = 4 in the original space, such as in Figure 5.4.

The point of this is that if in the higher-dimensional “¢-space” there is a w* such that
the bound of Theorem 5.9 is small, then the algorithm will perform well and make few
mistakes. But the nice thing is we didn’t have to computationally perform the mapping ¢!

So, how can we view the Perceptron algorithm as only interacting with data via dot-
products? Notice that w is always a linear combination of data points. For example, if we
made mistakes on the first, second and fifth examples, and these examples were positive,
positive, and negative respectively, we would have w = x; +x5—x5. So, if we keep track of
w this way, then to predict on a new example x;, we can write X! w = X7 X1 +X! X —X] X5.
So if we just replace each of these dot-products with “K”, we are running the algorithm

as if we had explicitly performed the ¢ mapping. This is called “kernelizing” the algorithm.
Many different pairwise functions on examples are legal kernel functions. One easy
way to create a kernel function is by combining other kernel functions together, via the

following theorem.

Theorem 5.10 Suppose Ky and Ky are kernel functions. Then

139

1. For any constant ¢ > 0, cK7 is a legal kernel. In fact, for any scalar function f,
the function K3(x,x") = f(x)f(x")Ki(x,X') is a legal kernel.

2. The sum K; + Ks, is a legal kernel.

3. The product, K1K,, is a legal kernel.

You will prove Theorem 5.10 in Exercise 5.9. Notice that this immediately implies that
the function K (x,x’) = (1+x7x')* is a legal kernel by using the fact that K;(x,x’) = 1 is
a legal kernel, K5(x,x’) = xTx’ is a legal kernel, then adding them, and then multiplying
that by itself £ times. Another popular kernel is the Gaussian kernel, defined as:

K(x,x) = e x>F

If we think of a kernel as a measure of similarity, then this kernel defines the similarity
between two data objects as a quantity that decreases exponentially with the squared
distance between them. The Gaussian kernel can be shown to be a true kernel func-
tion by first writing it as f(x)f(x’)e2chx/ for f(x) = e~ and then taking the Taylor
expansion of e2ch"', applying the rules in Theorem 5.10. Technically, this last step re-
quires considering countably infinitely many applications of the rules and allowing for
infinite-dimensional vector spaces.

5.7 Online to Batch Conversion

Suppose we have an online algorithm with a good mistake bound, such as the Perceptron
algorithm. Can we use it to get a guarantee in the distributional (batch) learning setting?
Intuitively, the answer should be yes since the online setting is only harder. Indeed, this
intuition is correct. We present here two natural approaches for such online to batch
conversion.

Conversion procedure 1: Random Stopping. Suppose we have an online algorithm
A with mistake-bound M. Say we run the algorithm in a single pass on a sample S of size
M /e. Let X, be the indicator random variable for the event that A makes a mistake on the
tth example. Since Z'i'l X; < M for any set S, we certainly have that E[Zﬁll X <M
where the expectation is taken over the random draw of S from D®l. By linearity of
expectation, and dividing both sides by |S| we therefore have:

S|
% >ELX] < M/js|=e (5.1)

Let h; denote the hypothesis used by algorithm A to predict on the tth example. Since
the tth example was randomly drawn from D, we have E[errp(h:)] = E[X;]. This means
that if we choose ¢ at random from 1 to |S|, i.e., stop the algorithm at a random time, the
expected error of the resulting prediction rule, taken over the randomness in the draw of
S and the choice of ¢, is at most € as given by equation (5.1). Thus we have:

140

Theorem 5.11 (Online to Batch via Random Stopping) If an online algorithm A
with mistake-bound M is run on a sample S of size M /e and stopped at a random time
between 1 and |S|, the expected error of the hypothesis h produced satisfies Elerrp(h)] < e.

Conversion procedure 2: Controlled Testing. A second natural approach to us-
ing an online learning algorithm A in the distributional setting is to just run a series of
controlled tests. Specifically, suppose that the initial hypothesis produced by algorithm
A is hy. Define §; = /(i + 2)? so we have Y = 6; = (%2 —1)0 < 6. We draw a set of
ny = %log(%) random examples and test to see whether h; gets all of them correct. Note
that if errp(hy) > € then the chance h; would get them all correct is at most (1—¢)™ < ;.
So, if hy indeed gets them all correct, we output h; as our hypothesis and halt. If not,
we choose some example z; in the sample on which A; made a mistake and give it to
algorithm A. Algorithm A then produces some new hypothesis hy and we again repeat,
testing hy on a fresh set of ny = élog(é) random examples, and so on.

In general, given h, we draw a fresh set of n, = %log(é) random examples and test
to see whether h; gets all of them correct. If so, we output h; and halt; if not, we choose
some x; on which h;(z;) was incorrect and give it to algorithm A. By choice of ny, if h;
had error rate € or larger, the chance we would mistakenly output it is at most §;. By
choice of the values d;, the chance we ever halt with a hypothesis of error € or larger is at
most 01 + dg + ... < 6. Thus, we have the following theorem.

Theorem 5.12 (Online to Batch via Controlled Testing) Let.A be an online learn-
ing algorithm with mistake-bound M. Then this procedure will halt after O(%log(%))
examples and with probability at least 1 — & will produce a hypothesis of error at most .

Note that in this conversion we cannot re-use our samples: since the hypothesis h; depends
on the previous data, we need to draw a fresh set of n; examples to use for testing it.

5.8 Support-Vector Machines

In a batch setting, rather than running the Perceptron algorithm and adapting it via
one of the methods above, another natural idea would be just to solve for the vector w
that minimizes the right-hand-side in Theorem 5.9 on the given dataset S. This turns
out to have good guarantees as well, though they are beyond the scope of this book. In
fact, this is the Support Vector Machine (SVM) algorithm. Specifically, SVMs solve the
following convex optimization problem over a sample S = {x1,Xs,...X,} where ¢ is a
constant that is determined empirically.

minimize clw|? + Z S;
i

subject to w-x; > 1 —s; for all positive examples x;
w - x; < —1+ s; for all negative examples x;
s; > 0 for all 4.

141

The variables s; are called slack variables, and notice that the sum of the slack variables
is the total hinge loss of w. So, this convex optimization is minimizing a weighted sum
of 1/42, where ~ is the margin, and the total hinge loss. If we were to add the constraint
that all s; = 0 then this would be solving for the maximum margin linear separator for the
data. However, in practice, optimizing a weighted combination generally performs better.
SVMs can also be kernelized, by using the dual of the above optimization problem (the
key idea is that the optimal w will be a weighted combination of data points, just as in the
Perceptron algorithm, and these weights can be variables in the optimization problem);
details are beyond the scope of this book.

5.9 VC-Dimension

In Section 5.2 we presented several theorems showing that so long as the training set
S is large compared to % log(|*H]), we can be confident that every h € H with errp(h) > €
will have errg(h) > 0, and if S is large compared to % log(|#]), then we can be confident
that every h € H will have |errp(h) —errg(h)| < e. In essence, these results used log(|H|)
as a measure of complexity of class H. VC-dimension is a different, tighter measure of
complexity for a concept class, and as we will see, is also sufficient to yield confidence
bounds. For any class H, VCdim(#H) < log,(|H|) but it can also be quite a bit smaller.
Let’s introduce and motivate it through an example.

Consider a database consisting of the salary and age for a random sample of the adult
population in the United States. Suppose we are interested in using the database to an-
swer questions of the form: “what fraction of the adult population in the United States
has age between 35 and 45 and salary between $50,000 and $70,0007” That is, we are
interested in queries that ask about the fraction of the adult population within some axis-
parallel rectangle. What we can do is calculate the fraction of the database satisfying
this condition and return this as our answer. This brings up the following question: How
large does our database need to be so that with probability greater than or equal to 1 —19,
our answer will be within +e of the truth for every possible rectangle query of this form?

If we assume our values are discretized such as 100 possible ages and 1,000 possible
salaries, then there are at most (100 x 1,000)% = 10' possible rectangles. This means we
can apply Theorem 5.3 with |H| < 10%°. Specifically, we can think of the target concept
c* as the empty set so that errg(h) is exactly the fraction of the sample inside rectangle
h and errp(h) is exactly the fraction of the whole population inside /.22 This would tell
us that a sample size of 555 (101010 + In(2/4)) would be sufficient.

However, what if we do not wish to discretize our concept class? Another approach
would be to say that if there are only N adults total in the United States, then there

22Technically D is the uniform distribution over the adult population of the United States, and we
want to think of S as an independent identical distributed sample from this D.

142

are at most N4 rectangles that are truly different with respect to D and so we could use
|H| < N*. Still, this suggests that S needs to grow with N, albeit logarithmically, and
one might wonder if that is really necessary. VC-dimension, and the notion of the growth
function of concept class H, will give us a way to avoid such discretization and avoid any
dependence on the size of the support of the underlying distribution D.

5.9.1 Definitions and Key Theorems

Definition 5.1 Given a set S of examples and a concept class H, we say that S is
shattered by H if for every A C S there exists some h € H that labels all examples in A
as positive and all examples in S\ A as negative.

Definition 5.2 The VC-dimension of H s the size of the largest set shattered by H.

For example, there exist sets of four points that can be shattered by rectangles with
axis-parallel edges, e.g., four points at the vertices of a diamond (see Figure 5.5). Given
such a set S, for any A C S, there exists a rectangle with the points in A inside the rect-
angle and the points in S\ A outside the rectangle. However, rectangles with axis-parallel
edges cannot shatter any set of five points. To see this, assume for contradiction that
there is a set of five points shattered by the family of axis-parallel rectangles. Find the
minimum enclosing rectangle for the five points. For each edge there is at least one point
that has stopped its movement. Identify one such point for each edge. The same point
may be identified as stopping two edges if it is at a corner of the minimum enclosing rect-
angle. If two or more points have stopped an edge, designate only one as having stopped
the edge. Now, at most four points have been designated. Any rectangle enclosing the
designated points must include the undesignated points. Thus, the subset of designated
points cannot be expressed as the intersection of a rectangle with the five points. There-
fore, the VC-dimension of axis-parallel rectangles is four.

We now need one more definition, which is the growth function of a concept class H.

Definition 5.3 Given a set S of examples and a concept class H, let H[S] = {hN S :
h € H}. That is, H[S] is the concept class H restricted to the set of points S. For integer
n and class H, let H[n| = max|g—, |H[S]|; this is called the growth function of H.

For example, we could have defined shattering by saying that S is shattered by H
if [H[S]| = 2/°!, and then the VC-dimension of H is the largest n such that H[n] = 2".
Notice also that for axis-parallel rectangles, H[n] = O(n*). The growth function of a class
is sometimes called the shatter function or shatter coefficient.

What connects these to learnability are the following three remarkable theorems. The
first two are analogs of Theorem 5.1 and Theorem 5.3 respectively, showing that one can
replace |H| with its growth function. This is like replacing the number of concepts in H
with the number of concepts “after the fact”, i.e., after S is drawn, and is subtle because

143

| Jw)

(a) (b)

Figure 5.5: (a) shows a set of four points that can be shattered by rectangles along with
some of the rectangles that shatter the set. Not every set of four points can be shattered
as seen in (b). Any rectangle containing points A, B, and C must contain D. No set of five
points can be shattered by rectangles with axis-parallel edges. No set of three collinear
points can be shattered, since any rectangle that contains the two end points must also
contain the middle point. More generally, since rectangles are convex, a set with one point
inside the convex hull of the others cannot be shattered.

we cannot just use a union bound after we have already drawn our set S. The third
theorem relates the growth function of a class to its VC-dimension. We now present the
theorems, give examples of VC-dimension and growth function of various concept classes,
and then prove the theorems.

Theorem 5.13 (Growth function sample bound) For any class H and distribution
D, if a training sample S is drawn from D of size

n > Zllogy(2H[2]) +logy(1/0)

then with probability > 1—46, every h € H with errp(h) > € has errs(h) > 0 (equivalently,
every h € H with errg(h) =0 has errp(h) < €).

Theorem 5.14 (Growth function uniform convergence) For any class H and dis-
tribution D, if a training sample S is drawn from D of size

8

n > 6—2[1n(27-[[2n])+1n(1/5)]

then with probability > 1 — ¢, every h € H will have |errs(h) — errp(h)| < e.
Theorem 5.15 (Sauer’s lemma) If VCdim(H) = d then H[n] < 330, (") < (2).
Notice that Sauer’s lemma was fairly tight in the case of axis-parallel rectangles,

though in some cases it can be a bit loose. E.g., we will see that for linear separators
in the plane, their VC-dimension is 3 but H[n] = O(n?). An interesting feature about

144

Sauer’s lemma is that it implies the growth function switches from taking the form 2" to
taking the form nVOe4™*) when n reaches the VC-dimension of the class H.

Putting Theorems 5.13 and 5.15 together, with a little algebra we get the following
corollary (a similar corollary results by combining Theorems 5.14 and 5.15):

Corollary 5.16 (VC-dimension sample bound) For any class H and distribution D,
a training sample S of size

0) (%[VCdim(H) log(1/€) + log(l/é)]>

is sufficient to ensure that with probability > 1 — &, every h € H with errp(h) > € has
errg(h) > 0 (equivalently, every h € H with errg(h) = 0 has errp(h) < €).

For any class H, VCdim(H) < log,(|H|) since H must have at least 2% concepts in
order to shatter £ points. Thus Corollary 5.16 is never too much worse than Theorem 5.1
and can be much better.

5.9.2 Examples: VC-Dimension and Growth Function

Rectangles with axis-parallel edges

As we saw above, the class of axis-parallel rectangles in the plane has VC-dimension
4 and growth function C[n] = O(n?).

Intervals of the reals

Intervals on the real line can shatter any set of two points but no set of three points
since the subset of the first and last points cannot be isolated. Thus, the VC-dimension
of intervals is two. Also, C[n] = O(n?) since we have O(n?) choices for the left and right
endpoints.

Pairs of intervals of the reals

Consider the family of pairs of intervals, where a pair of intervals is viewed as the set
of points that are in at least one of the intervals, in other words, their set union. There
exists a set of size four that can be shattered but no set of size five since the subset of first,
third, and last point cannot be isolated. Thus, the VC-dimension of pairs of intervals is
four. Also we have C[n] = O(n?).

Convex polygons
Consider the set system of all convex polygons in the plane. For any positive integer
n, place n points on the unit circle. Any subset of the points are the vertices of a convex

polygon. Clearly that polygon will not contain any of the points not in the subset. This

145

shows that convex polygons can shatter arbitrarily large sets, so the VC-dimension is
infinite. Notice that this also implies that C[n] = 2™.

Half spaces in d-dimensions

Define a half space to be the set of all points on one side of a hyper plane, i.e., a set
of the form {x|w”x > wp}. The VC-dimension of half spaces in d-dimensions is d + 1.

There exists a set of size d + 1 that can be shattered by half spaces. Select the d
unit-coordinate vectors plus the origin to be the d + 1 points. Suppose A is any subset
of these d + 1 points. Without loss of generality assume that the origin is in A. Take
a 0-1 vector w which has 1’s precisely in the coordinates corresponding to vectors not
in A. Clearly A lies in the half-space w/x < 0 and the complement of A lies in the
complementary half-space.

We now show that no set of d 4+ 2 points in d-dimensions can be shattered by linear
separators. This is done by proving that any set of d+2 points can be partitioned into two
disjoint subsets A and B of points whose convex hulls intersect. This establishes the claim
since any linear separator with A on one side must have its entire convex hull on that
side,?? so it is not possible to have a linear separator with A on one side and B on the other.

Let convex(S) denote the convex hull of point set S.

Theorem 5.17 (Radon): Any set S C R? with |S| > d + 2, can be partitioned into two
disjoint subsets A and B such that convex(A) N convex(B) # ¢.

Proof: Without loss of generality, assume |S| = d+2. Form a d x (d+2) matrix with one
column for each point of S. Call the matrix A. Add an extra row of all 1’s to construct a
(d+1) x (d+2) matrix B. Clearly the rank of this matrix is at most d+ 1 and the columns
are linearly dependent. Say x = (x1,29,...,%4:2) 1S a nonzero vector with Bx = 0.
Reorder the columns so that z1,x9,...,25 > 0 and 2411, Zs19,..., 2412 < 0. Normalize

x 50 Y |x;| = 1. Let b; (respectively a;) be the i*" column of B (respectively A). Then,
i=1

s d+2 s d+2 s

ST |wglby = > |ai|b; from which it follows that > |x;la; = . |zla; and Y |zi| =
i—1 =51 i—1 i=st1 i=1

d+2 s d+2 s d+2

> || Since Y |a;| = 1and > |z;| = 1eachsideof Y |z;lai = > |x;|a; is a convex
i=s+1 i=1 i=s+1 i=1 i=s+1

combination of columns of A which proves the theorem. TThus, S can be partitioned into
two sets, the first consisting of the first s points after the rearrangement and the second
consisting of points s + 1 through d + 2 . Their convex hulls intersect as required. B

23Tf any two points x; and X, lie on the same side of a separator, so must any convex combination: if
w-x; > band w-xy > bthen w- (axy + (1 —a)x2) > 0.

146

Radon’s theorem immediately implies that half-spaces in d-dimensions do not shatter
any set of d + 2 points.

Spheres in d-dimensions

A sphere in d-dimensions is a set of points of the form {x| |[x —xo| < r}. The VC-
dimension of spheres is d + 1. It is the same as that of half spaces. First, we prove that
no set of d + 2 points can be shattered by spheres. Suppose some set S with d + 2 points
can be shattered. Then for any partition A; and A, of S, there are spheres By and B,
such that By NS = A; and B, NS = Ay. Now By and By, may intersect, but there is no
point of S in their intersection. It is easy to see that there is a hyperplane perpendicular
to the line joining the centers of the two spheres with all of A; on one side and all of A,
on the other and this implies that half spaces shatter S, a contradiction. Therefore no
d + 2 points can be shattered by hyperspheres.

It is also not difficult to see that the set of d+ 1 points consisting of the unit-coordinate
vectors and the origin can be shattered by spheres. Suppose A is a subset of the d + 1
points. Let a be the number of unit vectors in A. The center ag of our sphere will be
the sum of the vectors in A. For every unit vector in A, its distance to this center will
be v/a — 1 and for every unit vector outside A, its distance to this center will be v/a + 1.
The distance of the origin to the center is y/a. Thus, we can choose the radius so that
precisely the points in A are in the hypersphere.

Finite sets

The system of finite sets of real numbers can shatter any finite set of real numbers
and thus the VC-dimension of finite sets is infinite.

5.9.3 Proof of Main Theorems

We begin with a technical lemma. Consider drawing a set S of n examples from D and
let A denote the event that there exists h € H with zero training error on S but true
error greater than or equal to e. Now draw a second set S” of n examples from D and let
B denote the event that there exists h € H with zero error on S but error greater than
or equal to €/2 on 5"

Lemma 5.18 Let H be a concept class over some domain X and let S and S’ be sets of
n elements drawn from some distribution D on X, where n > 8/¢. Let A be the event that
there exists h € ‘H with zero error on S but true error greater than or equal to €. Let B
be the event that there exists h € H with zero error on S but error greater than or equal
to 5 on S'. Then Prob(B) > Prob(A)/2.

Proof: Clearly, Prob(B) > Prob(A, B) = Prob(A)Prob(B|A). Consider drawing set S
and suppose event A occurs. Let h be in ‘H with errp(h) > € but errg(h) = 0. Now,

147

draw set S’. E(error of h on S’) = errp(h) > €. So, by Chernoff bounds, since n > 8/,
Prob(errgs/(h) > €/2) > 1/2. Thus, Prob(B|A) > 1/2 and Prob(B) > Prob(A)/2 as
desired.]

We now prove Theorem 5.13, restated here for convenience.

Theorem 5.13 (Growth function sample bound) For any class H and distribution
D, if a training sample S is drawn from D of size

n > llogy(2H[2n]) + logy(1/0)]

then with probability > 1—0, every h € H with errp(h) > € has errg(h) > 0 (equivalently,
every h € H with errg(h) =0 has errp(h) < €).

Proof: Consider drawing a set S of n examples from D and let A denote the event that
there exists h € H with true error greater than e but training error zero. Our goal is to
prove that Prob(A) < §.

By Lemma 5.18 it suffices to prove that Prob(B) < 6/2. Consider a third experiment.
Draw a set S” of 2n points from D and then randomly partition S” into two sets S and
S” of n points each. Let B* denote the event that there exists h € H with errg(h) =0
but errg/(h) > €/2. Prob(B*) = Prob(B) since drawing 2n points from D and randomly
partitioning them into two sets of size n produces the same distribution on (.S, S) as does
drawing S and S’ directly. The advantage of this new experiment is that we can now
argue that Prob(B*) is low by arguing that for any set S” of size 2n, Prob(B*|S") is low,
with probability now taken over just the random partition of S” into S and S’. The key
point is that since S” is fixed, there are at most |H[S”]| < H[2n] events to worry about.
Specifically, it suffices to prove that for any fixed h € H[S”], the probability over the
partition of S” that h makes zero mistakes on .S but more than en/2 mistakes on S’ is at
most 0/(2H[2n]). We can then apply the union bound over H[S"] = {h N S"|h € H}.

To make the calculations easier, consider the following specific method for partitioning
S” into S and S’. Randomly put the points in S” into pairs: (ay,b1), (az,bs), ..., (an, by).
For each index i, flip a fair coin. If heads put a; into S and b; into S, else if tails put a;
into S” and b; into S. Now, fix some partition h € H[S”] and consider the probability over
these n fair coin flips that A makes zero mistakes on S but more than en/2 mistakes on 5.
First of all, if for any index 7, h makes a mistake on both a; and b; then the probability is
zero (because it cannot possibly make zero mistakes on S). Second, if there are fewer than
en/2 indices i such that h makes a mistake on either a; or b; then again the probability is
zero because it cannot possibly make more than en/2 mistakes on S’. So, assume there
are r > en/2 indices i such that h makes a mistake on exactly one of a; or b;. In this case,
the chance that all of those mistakes land in S’ is exactly 1/2". This quantity is at most
1/27/2 < §/(2H[2n]) as desired for n as given in the theorem statement. B

148

We now prove Theorem 5.14, restated here for convenience.

Theorem 5.14 (Growth function uniform convergence) For any class H and dis-
tribution D, if a training sample S is drawn from D of size

8

n > 6—2[111(27-[[271])4-111(1/5)]

then with probability > 1 — 9§, every h € H will have |errg(h) — errp(h)| < e.

Proof: This proof is identical to the proof of Theorem 5.13 except B* is now the event
that there exists a set h € H[S”] such that the error of h on S differs from the error of h on
S" by more than €/2. We again consider the experiment where we randomly put the points
in S” into pairs (a;, b;) and then flip a fair coin for each index i, if heads placing a; into S
and b; into S, else placing a; into S" and b; into S. Consider the difference between the
number of mistakes h makes on S and the number of mistakes A makes on S’ and observe
how this difference changes as we flip coins for « = 1,2,...,n. Initially, the difference
is zero. If h makes a mistake on both or neither of (a;, b;) then the difference does not
change. Else, if h makes a mistake on exactly one of a; or b;, then with probability 1/2
the difference increases by one and with probability 1/2 the difference decreases by one.
If there are » < n such pairs, then if we take a random walk of r < n steps, what is the
probability that we end up more than en/2 steps away from the origin? This is equivalent
to asking: if we flip » < n fair coins, what is the probability the number of heads differs
from its expectation by more than en/4. By Hoeffding bounds, this is at most 26~ n/8,
This quantity is at most §/(2H[2n]) as desired for n as given in the theorem statement.

Finally, we prove Sauer’s lemma, relating the growth function to the VC-dimension.
Theorem 5.15 (Sauer’s lemma) If VCdim(H) = d then H[n] < 30, (") < (2

Proof: Let d = VCdim(#). Our goal is to prove for any set S of n points that
[H[S]| < (2,), where we are defining () = PR ("); this is the number of distinct
ways of choosing d or fewer elements out of n. We will do so by induction on n. As a

base case, our theorem is trivially true if n < d.
As a first step in the proof, notice that:
n n—1 n—1
= + 5.2
(Sd) (Sd) (gd—l> (5:2)
because we can partition the ways of choosing d or fewer items into those that do not

include the first item (leaving < d to be chosen from the remainder) and those that do
include the first item (leaving < d — 1 to be chosen from the remainder).

149

Now, consider any set S of n points and pick some arbitrary point x € S. By induc-
tion, we may assume that |H[S\ {z}]| < ("2,)). So, by equation (5.2) all we need to show

is that |H[S]| — |H[S\ {z}]| < (Z)). Thus, our problem has reduced to analyzing how

many more partitions there are of S than there are of S\ {z} using sets in H.

If H[S] is larger than H[S \ {}], it is because of pairs of sets in H[S] that differ only
on point x and therefore collapse to the same set when z is removed. For set h € H[S]
containing point z, define twin(h) = h \ {z}; this may or may not belong to H[S]. Let
T ={h € H[S]: x € h and twin(h) € H[S]}. Notice |H[S]| — |H[S \ {z}]| = |T]|.

Now, what is the VC-dimension of 77 If d’ = VCdim(7), this means there is some set
R of d points in S\ {r} that are shattered by 7. By definition of T, all 2¢ subsets of R
can be extended to either include z, or not include x and still be a set in H|[S]. In other
words, RU {x} is shattered by H. This means, d' + 1 < d. Since VCdim(7) < d — 1, by
induction we have |T] < (7)) as desired. N

5.9.4 VC-Dimension of Combinations of Concepts

Often one wants to create concepts out of other concepts. For example, given several
linear separators, one could take their intersection to create a convex polytope. Or given
several disjunctions, one might want to take their majority vote. We can use Sauer’s
lemma to show that such combinations do not increase the VC-dimension of the class by
too much.

Specifically, given k concepts hq, ho, ..., h; and a Booelan function f define the set
combg(hy, ... hy) ={z € X: f(hi(z),..., hg(x)) = 1}, where here we are using h;(z) to
denote the indicator for whether or not x € h;. For example, f might be the AND function
to take the intersection of the sets h;, or f might be the majority-vote function. This can
be viewed as a depth-two neural network. Given a concept class H, a Boolean function f,
and an integer k, define the new concept class COM By, (H) = {combs(hq, ..., hi) : h; €
H}. We can now use Sauer’s lemma to produce the following corollary.

Corollary 5.19 If the concept class H has VC-dimension d, then for any combination
function f, the class COMBy (M) has VC-dimension O(kdlog(kd)).

Proof: Let n be the VC-dimension of COMBy(H), so by definition, there must exist
a set S of n points shattered by COMBy;(H). We know by Sauer’s lemma that there
are at most n? ways of partitioning the points in S using sets in . Since each set in
COMB; ;(H) is determined by k sets in H, and there are at most (n4)* = n*® different
k-tuples of such sets, this means there are at most n*® ways of partitioning the points
using sets in COMB/ ;. (H). Since S is shattered, we must have 2" < n*@ or equivalently
n < kdlog,(n). We solve this as follows. First, assuming n > 16 we have log,(n) < y/n so
kdlogy(n) < kdy/n which implies that n < (kd)?. To get the better bound, plug back into
the original inequality. Since n < (kd)?, it must be that logy(n) < 2log,(kd). substituting
logn < 2log,(kd) into n < kdlog,n gives n < 2kdlog,(kd). B

150

This result will be useful for our discussion of Boosting in Section 5.10.

5.9.5 Other Measures of Complexity

V(C-dimension and number of bits needed to describe a set are not the only measures
of complexity one can use to derive generalization guarantees. There has been significant
work on a variety of measures. One measure called Rademacher complexity measures
the extent to which a given concept class H can fit random noise. Given a set of n
examples S = {xy,...,2,}, the empirical Rademacher complexity of H is defined as
Rs(H) =E;, . o, max LS oih(z;), where 0; € {—1,1} are independent random labels

with Prob[o; = 1] = % E.g., if you assign random =1 labels to the points in S and the
best classifier in H on average gets error 0.45 then Rg(H) = 0.55 — 0.45 = 0.1. One can
prove that with probability greater than or equal to 1 — ¢, every h € H satisfies true error

less than or equal to training error plus Rg(H) + 34/ n@/9) " For more on results such as

2n
this, see, e.g., [BM02].

5.10 Strong and Weak Learning - Boosting

We now describe boosting, which is important both as a theoretical result and as a
practical and easy-to-use learning method.

A strong learner for a problem is an algorithm that with high probability is able to
achieve any desired error rate € using a number of samples that may depend polynomially
on 1/e. A weak learner for a problem is an algorithm that does just a little bit better than
random guessing. It is only required to get with high probability an error rate less than
or equal to % — v for some 0 < v < % We show here that a weak-learner for a problem
that achieves the weak-learning guarantee for any distribution of data can be boosted to a
strong learner, using the technique of boosting. At the high level, the idea will be to take
our training sample S, and then to run the weak-learner on different data distributions
produced by weighting the points in the training sample in different ways. Running the
weak learner on these different weightings of the training sample will produce a series of
hypotheses hq, ho, ..., and the idea of our reweighting procedure will be to focus attention
on the parts of the sample that previous hypotheses have performed poorly on. At the
end we will combine the hypotheses together by a majority vote.

Assume the weak learning algorithm A outputs hypotheses from some class H. Our
boosting algorithm will produce hypotheses that will be majority votes over tq hypotheses
from H, for tg defined below. This means that we can apply Corollary 5.19 to bound the
VC-dimension of the class of hypotheses our boosting algorithm can produce in terms of
the VC-dimension of H. In particular, the class of rules that can be produced by the
booster running for ¢y rounds has VC-dimension O(t,VCdim(#) log(toVCdim(#))). This

in turn gives a bound on the number of samples needed, via Corollary 5.16, to ensure that

151

Boosting Algorithm

Given a sample S of n labeled examples x,...,x,, initialize each
example x; to have a weight w; = 1. Let w = (wy,...,wy,).

Fort=1,2,...,ty do

Call the weak learner on the weighted sample (S, w), receiving
hypothesis h;.

Multiply the weight of each example that was misclassified by
1

h; by a = ?Jj. Leave the other weights as they are.

2

End

Output the classifier MAJ(hy, ..., hy,) which takes the majority vote
of the hypotheses returned by the weak learner. Assume %, is odd so
there is no tie.

Figure 5.6: The boosting algorithm

high accuracy on the sample will translate to high accuracy on new data.

To make the discussion simpler, we will assume that the weak learning algorithm A,
when presented with a weighting of the points in our training sample, always (rather than
with high probability) produces a hypothesis that performs slightly better than random
guessing with respect to the distribution induced by weighting. Specificially:

Definition 5.4 (-Weak learner on sample) A weak learner is an algorithm that given
examples, their labels, and a nonnegative real weight w; on each erample x;, produces a

classifier that correctly labels a subset of examples with total weight at least (% +7) > w;.
=1

(2

At the high level, boosting makes use of the intuitive notion that if an example was
misclassified, one needs to pay more attention to it. The boosting procedure is in Figure
5.6.

Theorem 5.20 Let A be a y-weak learner for sample S. Then ty = O(%2 logn) is suffi-

cient so that the classifier MAJ(hy, ..., hy,) produced by the boosting procedure has training
error zero.

Proof: Suppose m is the number of examples the final classifier gets wrong. Each of
these m examples was misclassified at least t,/2 times so each has weight at least af/2.
Thus the total weight is at least ma®/2. On the other hand, at time ¢+ 1, only the weights
of examples misclassified at time ¢ were increased. By the property of weak learning, the

152

total weight of misclassified examples is at most (3 —~) of the total weight at time ¢. Let
weight(t) be the total weight at time ¢. Then

weight(t + 1) < (a 2-7)+G+9)) x weight(t)
= (14 27) x weight(?).

Since weight(0) = n, the total weight at the end is at most n(1 4 2)™. Thus

ma'/? < total weight at end < n(1 4 2v)%.

1/2 .
Y2ty — 1423 gpq rearranging terms

Substituting a = 1oy = 1-29

m < n(l—29)"(1429) = n[l - 497"
Using 1 —z < e® m < ne 27 Forty > 12 m < 1, so the number of misclassified

>~ 2920
items must be zero.]

Having completed the proof of the boosting result, here are two interesting observa-
tions:

Connection to Hoeffding bounds: The boosting result applies even if our weak learn-
ing algorithm is “adversarial”, giving us the least helpful classifier possible subject
to Definition 5.4. This is why we don’t want the « in the boosting algorithm to be
too large, otherwise the weak learner could return the negation of the classifier it
gave the last time. Suppose that the weak learning algorithm gave a classifier each
time that for each example, flipped a coin and produced the correct answer with
probability % + v and the wrong answer with probability % — 7, so it is a y-weak
learner in expectation. In that case, if we called the weak learner ¢y times, for any
fixed x;, Hoeffding bounds imply the chance the majority vote of those classifiers is
incorrect on x; is at most e~207”, So, the expected total number of mistakes m is
at most ne~2007" What is interesting is that this is the exact bound we get from
boosting without the expectation for an adversarial weak-learner.

A minimax view: Consider a 2-player zero-sum game >* with one row for each example
x; and one column for each hypothesis h; that the weak-learning algorithm might
output. If the row player chooses row ¢ and the column player chooses column j,
then the column player gets a payoff of one if h;(x;) is correct and gets a payoff
of zero if hj(x;) is incorrect. The v-weak learning assumption implies that for any
randomized strategy for the row player (any “mixed strategy” in the language of
game theory), there exists a response h; that gives the column player an expected

24A two person zero sum game consists of a matrix whose columns correspond to moves for Player 1
and whose rows correspond to moves for Player 2. The 45" entry of the matrix is the payoff for Player
1 if Player 1 choose the j** column and Player 2 choose the i*" row. Player 2’s payoff is the negative of
Playerl’s.

153

payoff of at least 3 ++. The von Neumann minimax theorem * states that this
implies there exists a probability distribution on the columns (a mixed strategy for
the column player) such that for any x;, at least a % -+ v probability mass of the
columns under this distribution is correct on x;. We can think of boosting as a
fast way of finding a very simple probability distribution on the columns (just an
average over O(logn) columns, possibly with repetitions) that is nearly as good (for
any x;, more than half are correct) that moreover works even if our only access to
the columns is by running the weak learner and observing its outputs.

We argued above that t, = O(= logn) rounds of boosting are sufficient to produce a
majority-vote rule h that will classify all of S correctly. Using our VC-dimension bounds,
this implies that if the weak learner is choosing its hypotheses from concept class H, then

a sample size ‘
0 (1 <VCd11;1(7—[))>
€ v

is sufficient to conclude that with probability 1 — § the error is less than or equal to e,
where we are using the O notation to hide logarithmic factors. It turns out that running
the boosting procedure for larger values of tj i.e., continuing past the point where S is
classified correctly by the final majority vote, does not actually lead to greater overfitting.
The reason is that using the same type of analysis used to prove Theorem 5.20, one can
show that as ty increases, not only will the majority vote be correct on each x € S, but
in fact each example will be correctly classified by a % + +' fraction of the classifiers,
where v/ — 7 as tyg — oo. lL.e., the vote is approaching the minimax optimal strategy for
the column player in the minimax view given above. This in turn implies that h can be
well-approximated over S by a vote of a random sample of O(1/+?) of its component, weak
hypotheses h;. Since these small random majority votes are not overfitting by much, our
generalization theorems imply that h cannot be overfitting by much either.

5.11 Stochastic Gradient Descent

We now describe a widely-used algorithm in machine learning, called stochastic gradi-
ent descent (SGD). The Perceptron algorithm we examined in Section 5.5.3 can be viewed
as a special case of this algorithm, as can methods for deep learning.

Let F be a class of real-valued functions f,, : R — R where w = (wy, wo, ..., w,) is a
vector of parameters. For example, we could think of the class of linear functions where
n =d and fu(x) = wlx, or we could have more complicated functions where n > d. For
each such function fy we can define an associated set hy, = {x : fw(x) > 0}, and let

25The von Neumann minimax theorem states that there exists a mixed strategy for each player so that
given Player 2’s strategy the best payoff possible for Player 1 is the negative of given Player 1’s strategy
the best possible payoff for Player 2. A mixed strategy is one in which a probability is assigned to every
possible move for each situation a player could be in.

154

Hr = {hw : fw € F}. For example, if F is the class of linear functions then Hz is the
class of linear separators.

To apply stochastic gradient descent, we also need a loss function L(fw(x), ¢*(x)) that
describes the real-valued penalty we will associate with function f,, for its prediction on
an example x whose true label is ¢*(x). The algorithm is then the following:

Stochastic Gradient Descent:

Given: starting point w = w;,,;; and learning rates A, Ag, A3, . ..
(e.g., Winit = 0 and A, = 1 for all £, or A\, = 1/1/1).

Consider a sequence of random examples (x1, ¢*(x1)), (X2, ¢*(x2)),

1. Given example (xy,c*(x;)), compute the gradient VL(fw(x;),c*(x;)) of the loss of

fw(x¢) with respect to the weights w. This is a vector in R™ whose ith component is
IL(fw(xt),c"(xt))
ow;)

2. Update: w < w — M\ VL(fw(x¢), c*(x¢)).

Let’s now try to understand the algorithm better by seeing a few examples of instan-
tiating the class of functions F and loss function L.
First, consider n = d and fy(x) = w’x, so F is the class of linear predictors. Consider
the loss function L(fw(x), ¢*(x)) = max(0, —c*(x) fw (X)), and recall that ¢*(x) € {—1,1}.
In other words, if fy (x) has the correct sign, then we have a loss of 0, otherwise we have
a loss equal to the magnitude of fy(x). In this case, if fi(x) has the correct sign and is
non-zero, then the gradient will be zero since an infinitesimal change in any of the weights
will not change the sign. So, when hy(x) is correct, the algorithm will leave w alone.
On the other hand, if fy(x) has the wrong sign, then g—i = —c*(x)ag"T'ix = —c*(x)x;. So,
using \; = 1, the algorithm will update w < w + ¢*(x)x. Note that this is exactly the
Perceptron algorithm. (Technically we must address the case that fy(x) = 0; in this case,

we should view fy, as having the wrong sign just barely.)

As a small modification to the above example, consider the same class of linear predic-
tors F but now modify the loss function to the hinge-loss L(fyw(x), " (x)) = max(0,1 —
c*(x) fw(x)). This loss function now requires f(x) to have the correct sign and have mag-
nitude at least 1 in order to be zero. Hinge loss has the useful property that it is an upper
bound on error rate: for any sample S, the training error is at most) o L(fw(x), ¢*(x)).
With this loss function, stochastic gradient descent is called the margin perceptron algo-
rithm.

More generally, we could have a much more complex class F. For example, consider

a layered circuit of soft threshold gates. Each node in the circuit computes a linear func-
tion of its inputs and then passes this value through an “activation function” such as

155

a(z) = tanh(z) = (e* — e *)/(e* + e~ *). This circuit could have multiple layers with
the output of layer ¢ being used as the input to layer ¢ + 1. The vector w would be the
concatenation of all the weight vectors in the network. This is the idea of deep neural
networks discussed further in Section 5.13.

While it is difficult to give general guarantees on when stochastic gradient descent will
succeed in finding a hypothesis of low error on its training set S, Theorems 5.5 and 5.3
imply that if it does and if S is sufficiently large, we can be confident that its true error
will be low as well. Suppose that stochastic gradient descent is run on a machine where
each weight is a 64-bit floating point number. This means that its hypotheses can each
be described using 64n bits. If S has size at least £[64n In(2) 4 In(1/8)], by Theorem 5.5
it is unlikely any such hypothesis of true error greater than e will be consistent with the
sample, and so if it finds a hypothesis consistent with .S, we can be confident its true error
is at most e. Or, by Theorem 5.3, if |S| > 55 (64n1n(2) 4 In(2/4)) then almost surely the
final hypothesis h produced by stochastic gradient descent satisfies true error leas than
or equal to training error plus e.

5.12 Combining (Sleeping) Expert Advice

Imagine you have access to a large collection of rules-of-thumb that specify what to
predict in different situations. For example, in classifying news articles, you might have
one that says “if the article has the word ‘football’, then classify it as sports” and another
that says “if the article contains a dollar figure, then classify it as business”. In predicting
the stock market, these could be different economic indicators. These predictors might
at times contradict each other, e.g., a news article that has both the word “football” and
a dollar figure, or a day in which two economic indicators are pointing in different direc-
tions. It also may be that no predictor is perfectly accurate with some much better than
others. We present here an algorithm for combining a large number of such predictors
with the guarantee that if any of them are good, the algorithm will perform nearly as well
as each good predictor on the examples on which that predictor fires.

Formally, define a “sleeping expert” to be a predictor h that on any given example x
either makes a prediction on its label or chooses to stay silent (asleep). We will think of
them as black boxes. Now, suppose we have access to n such sleeping experts hq, ..., hy,,
and let S; denote the subset of examples on which h; makes a prediction (e.g., this could
be articles with the word “football” in them). We consider the online learning model,
and let mistakes(A, S) denote the number of mistakes of an algorithm A on a sequence
of examples S. Then the guarantee of our algorithm A will be that for all ¢

E(mistakes(A, SZ)) < (1+¢€) - mistakes(h;, S;) + O (10%)

where € is a parameter of the algorithm and the expectation is over internal randomness
in the randomized algorithm A.

156

As a special case, if hq,...,h, are concepts from a concept class H, and so they all
make predictions on every example, then A performs nearly as well as the best concept
in H. This can be viewed as a noise-tolerant version of the Halving Algorithm of Section
5.5.2 for the case that no concept in H is perfect. The case of predictors that make
predictions on every example is called the problem of combining expert advice, and the
more general case of predictors that sometimes fire and sometimes are silent is called the
sleeping experts problem.

Combining Sleeping Experts Algorithm:

Initialize each expert h; with a weight w; = 1. Let € € (0,1). For each example z, do the
following:

1. [Make prediction] Let H, denote the set of experts h; that make a prediction on x, and

let w, = > wj;. Choose h; € H, with probability p;;, = w;/w, and predict h;(z).
]’LjEH,r

2. [Receive feedback] Given the correct label, for each h; € H, let m;, = 1 if h;(x) was
incorrect, else let m;,, = 0.

3. [Update weights] For each h; € H,, update its weight as follows:

o Letr;, = (ZhjeHz pjxmjx> J(1+€) —my,.

e Update w; < w;(1 + €)"=.
Note that ZhjeHz PjzMjs represents the algorithm’s probability of making a mis-
take on example x. So, h; is rewarded for predicting correctly (m;, = 0) especially
when the algorithm had a high probability of making a mistake, and h; is penal-

ized for predicting incorrectly (m;, = 1) especially when the algorithm had a low
probability of making a mistake.

For each h; ¢ H,, leave w; alone.

Theorem 5.21 For any set of n sleeping experts hq,..., h,, and for any sequence of
examples S, the Combining Sleeping Experts Algorithm A satisfies for all i:
E(mistakes(A, S;)) < (1 + ¢€) - mistakes(h;, S;) + O (*22)

€

where S; ={x € S :h; € H,}.

Proof: Consider sleeping expert h;. The weight of h; after the sequence of examples S
is exactly:

w; = (1 +e)zmesz‘[(ZhjEHzpj‘”mj”)/(pre)_m”}
(1 + 6)E[mistakes(A,Si)}/(lJre)7mistakes(hi,Si).

157

Let w =) ;wj. Clearly w; < w. Therefore, taking logs, we have:

E(mistakes(A, S;)) /(1 + €) — mistakes(h;, S;) < logy, w.

logW)

€ Y

So, using the fact that log,, . w = O(
E(mistakes(A, S;)) < (1+¢€) - mistakes(h;, S;) + O (1"%) .

Initially, w = n. To prove the theorem, it is enough to prove that w never increases. To
do so, we need to show that for each =, » 7, _p wi(1+ €)™ <37, - w;, or equivalently
dividing both sides by >2,, ., w; that 37, pie(1 + €)™ < 1, where for convenience we
define p;, = 0 for h; € H,.

For this we will use the inequalities that for 8,z € [0,1], f* < 1 — (1 —)z and
B7* <1+ (1 - B)z/B. Specifically, we will use 3 = (1 + ¢)~!. We now have:

S pe(lt ey = 3 pupr S
i J

= 1- (1 - ﬁ) memwc + (1 - ﬂ) ijxmjx

= 17
where the second-to-last line follows from using), p;; = 1 in two places. So w never
increases and the bound follows as desired.]

5.13 Deep Learning

Deep learning, or deep neural networks, refers to training many-layered networks of
nonlinear computational units. The input to the network is an example x € R?. The
first layer of the network transforms the example into a new vector fi(x). Then the
second layer transforms fi(x) into a new vector fo(fi(x)), and so on. Finally, the k"
layer outputs the final prediction fi(fr—1(...(f1(x)))). When the learning is supervised
the output is typically a vector of probabilities. The motivation for deep learning is that
often we are interested in data, such as images, that are given to us in terms of very
low-level features, such as pixel intensity values. Our goal is to achieve some higher-
level understanding of each image, such as what objects are in the image and what are
they doing. To do so, it is natural to first convert the given low-level representation into

158

Each gate is connected to a
k x k grid. Weights are tied

together.

< .

=)
e NN
<< <=
< X .

<

NN
SN Second set of gates each

S connected to a k x k grid.
Weights are tied together.

Figure 5.7: Convolution layers

one of higher-level features. That is what the layers of the network aim to do. Deep
learning is also motivated by multi-task learning, with the idea that a good higher-level
representation of data should be useful for a wide range of tasks. Indeed, a common use
of deep learning for multi-task learning is to share initial levels of the network across tasks.

A typical architecture of a deep neural network consists of layers of logic units. In a
fully connected layer, the output of each gate in the layer is connected to the input of
every gate in the next layer. However, if the input is an image one might like to recognize
features independent of where they are located in the image. To achieve this one often
uses a number of convolution layers. In a convolution layer, each gate gets inputs from a
small k x k grid where k£ may be 5 to 10. There is a gate for each k x k square array of
the image. The weights on each gate are tied together so that each gate recognizes the
same feature. There will be several such collections of gates, so several different features
can be learned. Such a level is called a convolution level and the fully connected layers
are called autoencoder levels. A technique called pooling is used to keep the number of
gates reasonable. A small k£ x k grid with k typically set to two is used to scan a layer.
The stride is set so the grid will provide a non overlapping cover of the layer. Each k x k
input grid will be reduced to a single cell by selecting the maximum input value or the
average of the inputs. For k = 2 this reduces the number of cells by a factor of four.

Deep learning networks are trained by stochastic gradient descent (Section 5.11), some-
times called back propagation in the network context. An error function is constructed

159

e
7 W47
SRS N
SR SE LKL LE K
L) KX~ NIXNSNINSL NI\ SN
NN NN NI

Figure 5.8: A deep learning fully connected network.

and the weights are adjusted using the derivative of the error function. This requires that
the error function be differentiable. A smooth threshold is used such as

xT

— pZ 8 e __ ,—e r __ - 2
tanh(x) = £ ° where ce-°e _ 1— (1)

er +e % % er +e”* er +e %
or sigmod(z) = H% where
9 si d —x —x
51granxo () = a —Ee—x)Q = sigmod(x) N _T_ e sigmoid(z) (1 — sigmoid(z)).
In fact the function
x x>0 OReLU(z) [1 >0
ReLU(z) = { 0 otherwise where or o { 0 otherwise

seems to work well even though its derivative at x = 0 is undefined. An advantage of
ReLU over sigmoid is that ReLLU does not saturate far from the origin.

Training a deep learning network of 7 or 8 levels using gradient descent can be compu-
tationally expensive.?® To address this issue one can train one level at a time on unlabeled
data using an idea called autoencoding. There are three levels, the input, a middle level
called the hidden level, and an output level as shown in Figure 5.9a. There are two sets
of weights. W, is the weights of the hidden level gates and W, is W{. Let x be the input
pattern and y be the output. The error is |x — y|?. One uses gradient descent to reduce
the error. Once the weights IW; are determined they are frozen and a second hidden level
of gates is added as in Figure 5.9 b. In this network W3 = W and stochastic gradient
descent is again used this time to determine W5. In this way one level of weights is trained

26In the image recognition community, researchers work with networks of 150 levels. The levels tend
to be convolution rather than fully connected.

160

~ 5 %m N /\%

7N\
X5,

7 W
T -4
QIR AT N
I PN

Figure 5.9: Autoencoder technique used to train one level at a time. In the Figure 5.9 (a)
train Wy and Ws. Then in Figure 5.9 (b), freeze Wy and train Wy and Ws. In this way
one trains one set of weights at a time.

at a time.

The output of the hidden gates is an encoding of the input. An image might be a
10® dimensional input and there may only be 10° hidden gates. However, the number of
images might be 107 so even though the dimension of the hidden layer is smaller than the
dimension of the input, the number of possible codes far exceeds the number of inputs
and thus the hidden layer is a compressed representation of the input. If the hidden layer
were the same dimension as the input layer one might get the identity mapping. This
does not happen for gradient descent starting with random weights.

The output layer of a deep network typically uses a softmax procedure. Softmax is
a generalization of logistic regression where given a set of vectors {x1,Xa,...X,} with
labels 11,1y, ... 1y, I; € {0,1} and with a weight vector w we define the probability that
the label [given z equals 0 or 1 by

1
PI’Ob(l = 1|X) = H—ﬁ = O'(WTX)
e—whx

and

Prob(l = 0|x) =1 — Prob(l = 1/x)

where o is the sigmoid function.

Define a cost function

J(w) = 3" (tilog(Prob(l = 1x)) + (1 — ;) log(1 — Prob(l = 1]x)))

7

161

and compute w to minimize J(x). Then

J(w) = 3" (tilog(o(w™)) + (1= 1) log(1 — o(w™)))

i

: g WTX . oglo WTX e WTX —0 WT X5
Since 22 %) — 45 (wTx)(1 — o(wTx))z;, it follows that 2 g(&ij D _ o)(f(leE() D

ow;
Thus

T T T

oJ _ Z (lia(w x)(1 —o(w X))ZL’]‘ (-1 (1—-0o(w'x))o(w X)xj>

o(wTx) 1 —o(wTx)

(1 — o(wTx)z; — (1 — zi>a(wa)xj)

T

(
= <(li$j —lLio(w x)z; —o(w
(

Tx)z; + liO'(WTX)CL’j>

Softmax is a generalization of logistic regression to multiple classes. Thus, the labels
l; take on values {1,2,...,k}. For an input x, softmax estimates the probability of each
label. The hypothesis is of the form

Prob(l = 1|x, wy) ewix
Prob(l = 2|x, wa) 1 eWa X
ho () = : TS ewix
: i=1% " :
Prob(l = k|x, wy) eWi X

where the matrix formed by the weight vectors is

W = (Wl,WQ,...,Wk>T

W is a matrix since for each label [;, there is a vector w; of weights.

Consider a set of n inputs {x1, Xa,...,Xy,}. Define

5(l:k)={ 1 ifl=k

0 otherwise

and
n k wiz;

J(W) = ZZ(S(li :j)logﬁ.

i=1 j=1 h=1
The derivative of the cost function with respect to the weights is

Va, J(W) = — Xn:Xj (6(1; = k) — Prob(l; = k)|x;, W).

j=1

162

convolution pooling

Image Convolution levels Fully connected levels Softmax

Figure 5.10: A convolution network

163

Note V,J(W) is a vector. Since wj is a vector, each component of V., JJ(WW) is the
derivative with respect to one component of the vector wj.

Over fitting is a major concern in deep learning since large networks can have hun-
dreds of millions of weights. In image recognition, the number of training images can
be significantly increased by random jittering of the images. Another technique called
dropout randomly deletes a fraction of the weights at each training iteration. Regulariza-
tion is used to assign a cost to the size of weights and many other ideas are being explored.

Deep learning is an active research area. Some of the ideas being explored are what
do individual gates or sets of gates learn. If one trains a network twice from starting with
random sets of weights, do gates learn the same features? In image recognition, the early
convolution layers seem to learn features of images rather than features of the specific set
of images they are being trained with. Once a network is trained on say a set of images
one of which is a cat one can freeze the weights and then find images that will map to
the activation vector generated by the cat image. One can take an artwork image and
separate the style from the content and then create an image using the content but a
different style [GEB15]. This is done by taking the activation of the original image and
moving it to the manifold of activation vectors of images of a given style. One can do
many things of this type. For example one can change the age of a child in an image
or change some other feature [GKL*15]. For more information about deep learning, see
[Ben09].27

5.13.1 Generative Adversarial Networks (GANs)

A method that is promising in trying to generate images that look real is to create code
that tries to discern between real images and synthetic images.

image

 —

enerator .
& synthetic
image _—
real discriminator

. —_—
image

One first trains the synthetic image discriminator to distinguish between real images and
synthetic ones. Then one trains the image generator to generate images that the discrim-
inator believes are real images. Alternating the training between the two units ends up
forcing the image generator to produce real looking images. This is the idea of Generative

2TSee also the tutorials: http://deeplearning.net/tutorial/deeplearning.pdf and
http://deeplearning.stanford.edu/tutorial/.

164

Adversarial Networks.

There are many possible applications for this technique. Suppose you wanted to train
a network to translate from English to German. First train a discriminator to determine
if a sentence is a real sentence in German as opposed to a synthetic sentence. Then train
a translator for English to German and a translator from German to English.

translate
to German

discriminator

translate
(—
to English

5.14 Further Current Directions

We now briefly discuss a few additional current directions in machine learning, focusing
on semi-supervised learning, active learning, and multi-task learning.

5.14.1 Semi-Supervised Learning

Semi-supervised learning refers to the idea of trying to use a large unlabeled data set U to
augment a given labeled data set L in order to produce more accurate rules than would
have been achieved using just L alone. The motivation is that in many settings (e.g.,
document classification, image classification, speech recognition), unlabeled data is much
more plentiful than labeled data, so one would like to make use of it if possible. Of course,
unlabeled data is missing the labels! Nonetheless it often contains information that an
algorithm can take advantage of.

As an example, suppose one believes the target function is a linear separator that
separates most of the data by a large margin. By observing enough unlabeled data to es-
timate the probability mass near to any given linear separator, one could in principle then
discard separators in advance that slice through dense regions and instead focus attention
on just those that indeed separate most of the distribution by a large margin. This is the
high level idea behind a technique known as Semi-Supervised SVMs. Alternatively, sup-
pose data objects can be described by two different “kinds” of features (e.g., a webpage
could be described using words on the page itself or using words on links pointing to the
page), and one believes that each kind should be sufficient to produce an accurate classi-
fier. Then one might want to train a pair of classifiers (one on each type of feature) and
use unlabeled data for which one is confident but the other is not to bootstrap, labeling

165

such examples with the confident classifier and then feeding them as training data to the
less-confident one. This is the high-level idea behind a technique known as Co-Training.
Or, if one believes “similar examples should generally have the same label”, one might
construct a graph with an edge between examples that are sufficiently similar, and aim for
a classifier that is correct on the labeled data and has a small cut value on the unlabeled
data; this is the high-level idea behind graph-based methods.

A formal model: The batch learning model introduced in Sections 5.1 and 5.3 in essence
assumes that one’s prior beliefs about the target function be described in terms of a class
of functions H. In order to capture the reasoning used in semi-supervised learning, we
need to also describe beliefs about the relation between the target function and the data
distribution. A clean way to do this is via a notion of compatibility x between a hypoth-
esis h and a distribution D. Formally, x maps pairs (h, D) to [0,1] with x(h,D) = 1
meaning that h is highly compatible with D and x(h,D) = 0 meaning that h is very
incompatible with D. The quantity 1 — x(h, D) is called the unlabeled error rate of h, and
denoted err,,,;(h). Note that for x to be useful, it must be estimatable from a finite sam-
ple; to this end, let us further require that x is an expectation over individual examples.
That is, overloading notation for convenience, we require x(h, D) = E,p[x(h, z)], where
X:HxX—[0,1].

For instance, suppose we believe the target should separate most data by margin .
We can represent this belief by defining x(h,z) = 0 if is within distance ~y of the de-
cision boundary of h, and x(h,z) = 1 otherwise. In this case, err,, (h) will denote the
probability mass of D within distance v of h’s decision boundary. As a different exam-
ple, in co-training, we assume each example can be described using two “views” that
each are sufficient for classification; that is, there exist ¢}, c; such that for each example
x = (21, x2) we have ¢f(x1) = ¢5(x9). We can represent this belief by defining a hypothesis
h = (h1, ha) to be compatible with an example (z1, x2) if hy (1) = ho(z2) and incompatible
otherwise; err,,;(h) is then the probability mass of examples on which h; and hy disagree.

As with the class H, one can either assume that the target is fully compatible (i.e.,
erryn(c®) = 0) or instead aim to do well as a function of how compatible the target is.
The case that we assume ¢* € H and erry,(c*) = 0 is termed the “doubly realizable
case”. The concept class ‘H and compatibility notion y are both viewed as known.

Intuition: In this framework, the way that unlabeled data helps in learning can be in-
tuitively described as follows. Suppose one is given a concept class H (such as linear
separators) and a compatibility notion x (such as penalizing h for points within distance
7 of the decision boundary). Suppose also that one believes ¢* € H (or at least is close)
and that err,,(c¢*) = 0 (or at least is small). Then, unlabeled data can help by allowing
one to estimate the unlabeled error rate of all h € H, thereby in principle reducing the
search space from H (all linear separators) down to just the subset of A that is highly
compatible with D. The key challenge is how this can be done efficiently (in theory,

166

in practice, or both) for natural notions of compatibility, as well as identifying types of
compatibility that data in important problems can be expected to satisfy.

A theorem: The following is a semi-supervised analog of our basic sample complexity
theorem, Theorem 5.1. First, fix some set of functions H and compatibility notion Y.
Given a labeled sample L, define érr(h) to be the fraction of mistakes of h on L. Given
an unlabeled sample U, define x(h,U) = E,y[x(h,)] and define érr,,(h) = 1—x(h,U).
That is, err(h) and érr,, (h) are the empirical error rate and unlabeled error rate of h,
respectively. Finally, given o > 0, define Hp , (a) to be the set of functions f € H such
that erryu(f) < a.

Theorem 5.22 If ¢* € H then with probability at least 1 — 9, for labeled set L and
unlabeled set U drawn from D, the h € H that optimizes érr m(h) subject to err(h) =0
will have errp(h) < € for

2 4 1 2
|U| > = {ln |H| + In 5} , and |L| > - [IH|HD,X<€TTunZ(C*) + 2¢)| + In S} :

Equivalently, for |U| satisfying this bound, for any |L|, whp the h € H that minimizes
erruni(h) subject to érr(h) =0 has

errp(h) < % {ln |Hp o (errym(c’) + 2€)| + In %])

Proof: By Hoeffding bounds, |U] is sufficiently large so that with probability at least
1—4/2, all h € H have |erTyu(h) — erryu(h)] < e. Thus we have:

{f et erruu(f) <erryu(c”) + e} C Hp(erryu(c’) + 2e¢).

The given bound on |L| is sufficient so that with probability at least 1 — 4§, all h € H with
err(h) = 0 and érryn(h) < erry,(c®) 4+ € have errp(h) < € furthermore, érr,,(c¢*) <
erryn(c*) + €, so such a function h exists. Therefore, with probability at least 1 — ¢, the
h € H that optimizes err,,(h) subject to érr(h) = 0 has errp(h) < ¢, as desired. B

One can view Theorem 5.22 as bounding the number of labeled examples needed to learn
well as a function of the “helpfulness” of the distribution D with respect to y. Namely,
a helpful distribution is one in which Hp, () is small for « slightly larger than the
compatibility of the true target function, so we do not need much labeled data to identify a
good function among those in Hp , (o). For more information on semi-supervised learning,
see [BB10, BM98, CSZ06, Joa99, Zhu06, ZGL03].

5.14.2 Active Learning

Active learning refers to algorithms that take an active role in the selection of which ex-
amples are labeled. The algorithm is given an initial unlabeled set U of data points drawn
from distribution D and then interactively requests for the labels of a small number of

167

these examples. The aim is to reach a desired error rate € using much fewer labels than
would be needed by just labeling random examples (i.e., passive learning).

As a simple example, suppose that data consists of points on the real line and H =
{fa: fax) =1iff x > a} for a € R. That is, H is the set of all threshold functions on
the line. It is not hard to show (see Exercise 5.2) that a random labeled sample of size
O(Llog(s)) is sufficient to ensure that with probability > 1 — 4, any consistent threshold
o’ has error at most e. Moreover, it is not hard to show that (%) random examples are
necessary for passive learning. However, with active learning we can achieve error € using
only O(log(%) + log log(%)) labels. Specifically, first draw an unlabeled sample U of size
O({log()). Then query the leftmost and rightmost points: if these are both negative
then output @’ = oo, and if these are both positive then output a’ = —co. Otherwise (the
leftmost is negative and the rightmost is positive), perform binary search to find two ad-
jacent examples x, 2’ such that = is negative and z’ is positive, and output @’ = (z+2')/2.
This threshold @’ is consistent with the labels on the entire set U, and so by the above
argument, has error < e with probability > 1 — 9.

The agnostic case, where the target need not belong in the given class H is quite a bit
more subtle, and addressed in a quite general way in the “A%” Agnostic Active learning
algorithm [BBL09]. For more information on active learning, see [Das11, BU14].

5.14.3 Multi-Task Learning

In this chapter we have focused on scenarios where our goal is to learn a single target
function c¢*. However, there are also scenarios where one would like to learn multiple target

functions cj, 3, ..., . If these functions are related in some way, then one could hope to

Y n”

do so with less data per function than one would need to learn each function separately.
This is the idea of multi-task learning.

One natural example is object recognition. Given an image x, ¢;(x) might be 1 if x is
a coffee cup and 0 otherwise; ¢3(x) might be 1 if x is a pencil and 0 otherwise; ¢§(x) might
be 1 if x is a laptop and 0 otherwise. These recognition tasks are related in that image
features that are good for one task are likely to be helpful for the others as well. Thus,
one approach to multi-task learning is to try to learn a common representation under
which each of the target functions can be described as a simple function. Another natural
example is personalization. Consider a speech recognition system with n different users.
In this case there are n target tasks (recognizing the speech of each user) that are clearly
related to each other. Some good references for multi-task learning are [TM95, Thr96].

5.15 Bibliographic Notes

The basic theory underlying learning in the distributional setting was developed by Vapnik
[Vap82], Vapnik and Chervonenkis [VCT71], and Valiant [Val84]. The connection of this
to the notion of Occam’s razor is due to [BEHWS87]. For more information on uniform

168

convergence, regularization and complexity penalization, see [Vap98]. The Perceptron
algorithm for online learning of linear separators was first analyzed by Block [Blo62]
and Novikoff [Nov62]; the proof given here is from [MP69]. A formal description of
the online learning model and its connections to learning in the distributional setting is
given in [Lit87]. Support Vector Machines and their connections to kernel functions were
first introduced by [BGV92], and extended by [CV95], with analysis in terms of margins
given by [STBWA9S]. For further reading on SVMs, learning with kernel functions, and
regularization, see [SS01]. VC dimension is due to Vapnik and Chervonenkis [VCT71]
with the results presented here given in Blumer, Ehrenfeucht, Haussler and Warmuth
[BEHW89]. A good discussion of Rademacher complexity is given in [BM02]. Boosting
was first introduced by Schapire [Sch90], and Adaboost and its guarantees are due to
Freund and Schapire [FS97]. Analysis of the problem of combining expert advice via
multiplicative weights was given by Littlestone and Warmuth [LW94] and Cesa-Bianchi
et al. [CBFH'97]; the analysis given here of the more general sleeping experts problem is
from [BMO07].

A good discussion of deep learning is given by Bengio [Ben09]. For more information
on semi-supervised learning, see [BB10, BM98, CSZ06, Joa99, Zhu06, ZGL03]|, for more on
active learning, see [BBL09, Das11, BU14|, and for multi-task learning, see [TM95, Thr96].

There are many excellent reference books on machine learning in addition to those
noted above, including Mitchell [Mit97], Kearns and Vazirani [KV95], and Shalev-Shwartz
and Ben-David [SSBD14].

169

5.16 Exercises

Exercise 5.1 (Section 5.2 and 5.3) Consider the instance space X = {0,1}% and let
H be the class of 3-CNF formulas. That is, H is the set of concepts that can be described
as a conjunction of clauses where each clause is an OR of up to 3 literals. (These are also
called 3-SAT formulas). For example ¢* might be (x1VZaVxs)(x2Viay)(T1Vas)(zaVasVay).
Assume we are in the PAC learning setting, so examples are drawn from some underlying
distribution D and labeled by some 3-CNF' formula c*.

1. Give a number of samples m that would be sufficient to ensure that with probability
> 1—20, all 3-CNF formulas consistent with the sample have error at most € with
respect to D.

2. Give a polynomial-time algorithm for PAC-learning the class of 3-CNF formulas.

Exercise 5.2 (Section 5.2) Consider the instance space X = R, and the class of func-
tions H = {fa : folx) =1 iff x > a} for a € R. That is, H is the set of all threshold
functions on the line. Prove that for any distribution D, a sample S of size O(+1log(5))
is sufficient to ensure that with probability > 1 — 0, any fo such that errs(f,) = 0 has
errp(fo) < €. Note that you can answer this question from first principles, without using
the concept of VC-dimension.

Exercise 5.3 (Perceptron; Section 5.5.3) Consider running the Perceptron algorithm
in the online model on some sequence of examples S. Let S’ be the same set of examples
as S but presented in a different order. Does the Perceptron algorithm necessarily make
the same number of mistakes on S as it does on S'? If so, why? If not, show such an S
and S’ (consisting of the same set of examples in a different order) where the Perceptron
algorithm makes a different number of mistakes on S’ than it does on S.

Exercise 5.4 (representation and linear separators) Show that any disjunction (see
Section 5.3.1) over {0,1}¢ can be represented as a linear separator. Show that moreover
the margin of separation is Q(1/v/d).

Exercise 5.5 (Linear separators; easy) Show that the parity function on d > 2
Boolean variables cannot be represented by a linear threshold function. The parity function
1s 1 if and only if an odd number of inputs is 1.

Exercise 5.6 (Perceptron; Section 5.5.3) We know the Perceptron algorithm makes
at most 1/+* mistakes on any sequence of examples that is separable by margin v (we
assume all examples are normalized to have length 1). However, it need not find a sep-
arator of large margin. If we also want to find a separator of large margin, a natural
alternative is to update on any example x such that f*(x)(w -x) < 1; this is called the
margin perceptron algorithm.

1. Argue why margin perceptron is equivalent to running stochastic gradient descent on
the class of linear predictors (fw(X) = W - x) using hinge loss as the loss function
and using Ay = 1.

170

2. Prove that on any sequence of examples that are separable by margin vy, this algorithm
will make at most 3/~* updates.

3. In part 2 you probably proved that each update increases |w|* by at most 3. Use
this (and your result from part 2) to conclude that if you have a dataset S that
1s separable by margin v, and cycle through the data until the margin perceptron
algorithm makes no more updates, that it will find a separator of margin at least

/3.

Exercise 5.7 (Decision trees, regularization; Section 5.3) Pruning a decision tree:
Let S be a labeled sample drawn iid from some distribution D over {0,1}", and suppose
we have used S to create some decision tree T'. However, the tree T is large, and we are
concerned we might be overfitting. Give a polynomial-time algorithm for pruning T' that
finds the pruning h of T that optimizes the right-hand-side of Corollary 5.6, i.e., that for
a giwen 0 > 0 minimizes:

size(h)In(4) + In(2/9)
errs(h) + \/ 21| .
To discuss this, we need to define what we mean by a “pruning” of T and what we mean
by the “size” of h. A pruning h of T is a tree in which some internal nodes of T" have been
turned into leaves, labeled “+7 or “—7 depending on whether the majority of examples in
S that reach that node are positive or negative. Let size(h) = L(h)log(n) where L(h) is
the number of leaves in h.

Hint #1: it is sufficient, for each integer L = 1,2,..., L(T), to find the pruning of T
with L leaves of lowest empirical error on S, that is, hy = argminy,,)_rerrs(h). Then
you can just plug them all into the displayed formula above and pick the best one.

Hint #2: use dynamic programming.

Exercise 5.8 (Decision trees, sleeping experts; Sections 5.3, 5.12) “Pruning” a
Decision Tree Online via Sleeping Fxperts: Suppose that, as in the above problem, we are
giwen a decision tree T, but now we are faced with a sequence of examples that arrive
online. One interesting way we can make predictions is as follows. For each node v of
T (internal node or leaf) create two sleeping experts: one that predicts positive on any
example that reaches v and one that predicts negative on any example that reaches v. So,
the total number of sleeping experts is O(L(T)).

1. Say why any pruning h of T, and any assignment of {+, —} labels to the leaves of h,
corresponds to a subset of sleeping experts with the property that exactly one sleeping
expert in the subset makes a prediction on any given example.

2. Prove that for any sequence S of examples, and any given number of leaves L, if

Llog(L(T)

we run the sleeping-experts algorithm using € = 5]), then the expected error

rate of the algorithm on S (the total number of mistakes of the algorithm divided by

171

|S|) will be at most errg(hr) + O(%), where hy, = argming, ;y_rerrs(h)

1s the pruning of T with L leaves of lowest error on S.

3. In the above question, we assumed L was given. Ezxplain how we can remove this as-

sumption and achieve a bound of miny, [errg(hL) + O(%L‘(T)))] by instantiating

L(T) copies of the above algorithm (one for each value of L) and then combining

these algorithms using the experts algorithm (in this case, none of them will be
sleeping).

Exercise 5.9 Kernels; (Section 5.6) Prove Theorem 5.10.

Exercise 5.10 What is the VC-dimension of right corners with azis aligned edges that
are oriented with one edge going to the right and the other edge going up?

Exercise 5.11 (VC-dimension; Section 5.9) What is the VC-dimension V of the
class H of axis-parallel bozes in R*? That is, H = {hap : a,b € R} where hap(x) =1
ifa; <wz; <b; foralli=1,...,d and hap(x) = —1 otherwise.

1. Prove that the VC-dimension is at least your chosen V by giving a set of V' points
that is shattered by the class (and explaining why it is shattered).

2. Prove that the VC-dimension is at most your chosen V' by proving that no set of
V 4+ 1 points can be shattered.

Exercise 5.12 (VC-dimension, Perceptron, and Margins; Sections 5.5.3, 5.9)
Say that a set of points S is shattered by linear separators of margin v if every labeling
of the points in S is achievable by a linear separator of margin at least v. Prove that no
set of 1/9? + 1 points in the unit ball is shattered by linear separators of margin .

Hint: think about the Perceptron algorithm and try a proof by contradiction.

Exercise 5.13 (Linear separators) Suppose the instance space X is {0,1}¢ and con-
sider the target function c¢* that labels an example x as positive if the least index i for
which x; = 1 is odd, else labels x as negative. In other words, c*(x) = “if xt1 = 1 then
positive else if o = 1 then negative else if x3 = 1 then positive else ... else negative”.
Show that the rule can be represented by a linear threshold function.

Exercise 5.14 (Linear separators; harder) Prove that for the problem of Ezercise
5.13, we cannot have a linear separator with margin at least 1/ f(d) where f(d) is bounded
above by a polynomial function of d.

Exercise 5.15 VC-dimension Prove that the VC-dimension of circles in the plane is
three.

Exercise 5.16 VC-dimension Show that the VC-dimension of arbitrary right triangles
in the plane is seven.

172

Exercise 5.17 VC-dimension Prove that the VC-dimension of triangles in the plane
18 Seven.

Exercise 5.18 VC-dimension Prove that the VC dimension of convex polygons in the
plane is infinite.

Exercise 5.19 At present there are many interesting research directions in deep learning
that are being explored. This exercise focuses on whether gates in networks learn the same
thing independent of the architecture or how the network is trained. On the web there
are several copies of Alexnet that have been trained starting from different random initial
weights. Select two copies and form a matrix where the columns of the matrix correspond
to gates in the first copy of Alexnet and the rows of the matriz correspond to gates of
the same level in the second copy. The ij*" entry of the matriz is the covariance of the
activation of the j gate in the first copy of Alexnet with the i'" gate in the second copy.
The covariance is the expected value over all tmages in the data set.

1. Match the gates in the two copies of the network using a bipartite graph matching
algorithm. What is the fraction of matches that have a high covariance?

2. It is possible that there is no good one to one matching of gates but that some small
set of gates in the first copy of the network learn what some small set of gates in the
second copy learn. Fxplore a clustering technique to match sets of gates and carry
out an experiment to do this.

Exercise 5.20

1. Input an image to a deep learning network. Reproduce the image from the activation
vector, Aimage, 1t produced by inputting a random image and producing an activation
vector Arandom- Lhen by gradient descent modify the pizels in the random image to
minimize the error function |Gimage — Grandom|?-

2. Train a deep learning network to produce an image from an activation network.

Exercise 5.21

1. Create and train a simple deep learning network consisting of a convolution level with
pooling, a fully connected level, and then softmazx. Keep the network small. For input
data use the MNIST data set http://yann.lecun.com/exdb/mnist/ with 28 x 28
images of digits. Use maybe 20 channels for the convolution level and 100 gates for
the fully connected level.

2. Create and train a second network with two fully connected levels, the first level with
200 gates and the second level with 100 gates. How does the accuracy of the second
network compare to the first?

173

3. Train the second network again but this time use the activation vector of the 100
gate level and train the second network to produce that activation vector and only
then train the softmax. How does the accuracy compare to direct training of the

second network and the first network?

convolution

first network second network

174

