TTIC 31250: An Introduction to the Theory of Machine Learning

Machine Learning and Differential Privacy

Avrim Blum
05/25/22
Learning and Privacy

• To do machine learning, we need data.

• What if the data contains sensitive information?

• Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.

• E.g., using search logs of friends to recommend query completions:

| Why are _ | Why are my feet so itchy? |
Learning and Privacy

• To do machine learning, we need data.

• What if the data contains sensitive information?

• Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.

• E.g., SVM or perceptron on medical data:
 - Suppose feature j is has-green-hair and the learned w has $w_j \neq 0$.
 - If there is only one person in town with green hair, you know they were in the study.
Learning and Privacy

• To do machine learning, we need data.

• What if the data contains sensitive information?

• Even if the (person running the) learning algo can be trusted, perhaps the output of the algorithm reveals sensitive info.

• An approach to address these problems:

 Differential Privacy
A preliminary story

- A classic result from theoretical crypto:
 - Say you want to figure out the average numeric grade of people in the room, without revealing anything about your own grade other than what is inherent in the answer.
A preliminary story

• A classic result from theoretical crypto:
 – Say you want to figure out the average numeric grade of people in the room, without revealing anything about your own grade other than what is inherent in the answer.
 – It’s really cool. Want to try?

• Anyone have to go to the bathroom?
 – What happens if we do it again?

Differential privacy “lets you go to the bathroom in peace”
Differential Privacy

High level idea:

• What we want is a protocol that has a probability distribution over outputs:

 such that if person i changed their input from x_i to any other allowed x'_i, the relative probabilities of any output do not change by much.

• This would effectively allow that person to pretend their input was any other value they wanted.

Bayes rule:

$$\frac{\Pr(x_i|output)}{\Pr(x'_i|output)} = \frac{\Pr(output|x_i)}{\Pr(output|x'_i)} \cdot \frac{\Pr(x_i)}{\Pr(x'_i)}$$

(Posterior \approx Prior)
Differential Privacy: Definition

It’s a property of a protocol A which you run on some dataset X producing some output $A(X)$.

- A is ϵ-differentially private if for any two neighbor datasets S, S' (differ in just one element $x_i \rightarrow x_i'$),

 for all outcomes v,

 $$e^{-\epsilon} \leq \Pr(A(S)=v)/\Pr(A(S')=v) \leq e^\epsilon$$

approx $1-\epsilon$

probability over randomness in A

approx $1+\epsilon$
Differential Privacy: Definition

A is ϵ-differentially private if for any two neighbor datasets S, S' (differ in just one element $x_i \rightarrow x_i'$),

$$e^{-\epsilon} \leq \frac{\Pr(A(S)=v)}{\Pr(A(S')=v)} \leq e^{\epsilon}$$

for all outcomes v.

It's a property of a protocol A which you run on some dataset X producing some output $A(X)$.

View as model of plausible deniability

(pretend after the fact that my input was really x_i')
Differential Privacy: Methods

It’s a property of a protocol A which you run on some dataset X producing some output $A(X)$.

- Can we achieve it?
 - Sure, just have $A(X)$ always output 0. Or random output independent of X.
 - This is perfectly private, but also completely useless.
 - Can we achieve it while still providing useful information?
Laplace Mechanism

Say have n inputs in range \([0, b]\). Want to release average while preserving privacy.

- Changing one input can affect average by \(\leq \frac{b}{n}\).

- Idea: take answer and add noise from Laplace distrib \(p(x) \propto e^{-|x|\epsilon n/b}\)

- Changing one input changes prob of any given answer by \(\leq e^\epsilon\).

\[
\frac{e^{-|x-b/n|\epsilon n/b}}{e^{-|x|\epsilon n/b}} \leq e^\epsilon.
\]
Laplace Mechanism

Say have n inputs in range \([0,b]\). Want to release average while preserving privacy.

- Changing one input can affect average by \(\leq b/n\).

- Idea: take answer and add noise from Laplace distrib \(p(x) \propto e^{-|x|\epsilon n/b}\)

- Amount of noise added will likely be \(\approx \pm b/(n\epsilon)\).

- To get an overall error of \(\pm \tau\), you need a sample size \(n = \frac{b}{\tau \epsilon}\).

- Get a utility/privacy/database-size tradeoff.

- If want to estimate mean of a distribution up to \(\pm \tau\) and the database is an iid sample, then for \(\tau < \epsilon\) you can get privacy “for free”.
Laplace mechanism more generally

- E.g., f = standard deviation of income
- E.g., f = result of some fancy computation.

Global Sensitivity of f:

$$ GS_f = \max_{\text{neighbors } X, X'} |f(X) - f(X')| $$

- Just add noise $\text{Lap}(GS_f / \epsilon)$.
What can we do with this?

- Interface to ask questions
- Run learning algorithms by breaking down interaction into series of queries with noisy answers.
- **But**, each answer leaks some privacy:
 - If k questions and want total privacy loss of ϵ, better answer each with ϵ/k.

$$f(x) + \text{noise}$$
Can run SQ algorithms

• Anything learnable via Statistical Queries is learnable differentially privately using Laplace mechanism.

• Statistical query model:

\[
q(x, l) = \Pr_D[q(x, f(x)) = 1] \pm \tau.
\]

• What is the error rate of my current rule?
• What is the correlation of \(x_1\) with \(f\) when \(x_2 = 0\)? …

• Many algorithms can be re-written to interface via such statistical estimates.
Can run SQ algorithms

• Anything learnable via Statistical Queries is learnable differentially privately using Laplace mechanism.

• Statistical query model:

\[q(x,l) \]
\[\Pr_D[q(x,f(x))=1] \pm \tau. \]

• What is the error rate of my current rule?

• What is the correlation of \(x_1 \) with \(f \) when \(x_2 = 0 \)? …

- Really tailor-made for DP.
- In fact, for a single query, Laplace mechanism adds noise \(1/(\epsilon n) \).
- If need to ask \(Q \) question of tolerance \(\tau \), can use \(n \geq \max\left(\frac{Q}{\epsilon \tau}, \frac{Q}{\tau^2}\right) \).
Privately learnable = SQ-learnable?

- **[KLNRS08]**: Actually, anything learnable is learnable in principle with DP.
 - Exponential mechanism for general classes.
 - Assign score to each $f \in C$, exponentially decaying in its suboptimality.
 - Choose from this distribution over C.
 - Efficient algorithm for $C = \{\text{parity functions}\}$.
 - Interesting since not known to be efficiently learnable with noise, and provably not SQ-learnable.
 - SQ-learnable = learnable with local privacy, where no centralized database at all.
Local Sensitivity

- Consider $f = \text{median income}$
 - On some databases, f could be *very* sensitive. E.g., 3 people at salary=0, 3 people at salary=b, and you.
 - But on many databases, it’s not.
 - If f is not very sensitive on the actual input X, does that mean we don’t need to add much noise?

$$\text{LS}_f(X) = \max_{X'} |f(X) - f(X')|$$
Local Sensitivity

- Consider $f =$ median income
 - If f is not very sensitive on the actual input X, does that mean we don’t need to add much noise?
- Be careful: what if sensitivity itself is sensitive?
[NRS07] prove can instead use (roughly) the following smooth bound instead:

$$\max Y \left[\text{LS}_{f}(Y) e^{-\epsilon d(X,Y)} \right]$$
Smooth Sensitivity

- In principle, could apply sensitivity idea to any learning algorithm (say) that you’d like to run on your data.
- But might be hard to figure out

\[
\text{Alg} \rightarrow \text{Alg}(X) + \text{noise}
\]
Objective perturbation \[CMS08\]

- Idea: add noise to the objective function used by the learning algorithm.
- Natural for algorithms like SVMs that have regularization term.
- \[CMS\] show how to do this, if use a smooth loss function. Also show nice experimental results.
So far: learning as goal, privacy as constraint

Now: learning as tool for achieving stronger privacy
Answering more questions

“Add iid noise” approach can only answer a limited number of questions before it has to shut down.

- **Fundamental limit:** $\#\text{questions} \mid S \mid^2$ to preserve this kind of privacy?
- Output “sanitized database” people can examine as they wish?
Idea: consider SQ’s from class of small VC dim

- Fix a class Q of statistical (i.e., counting/n) queries you care about (e.g., all 2^d marginals).
- VC-dimension bounds: whp a random subsample of size $O(VC\text{dim}(Q)/\alpha^2)$, will approximate all $q \in Q$ up to $\pm \alpha$.
- If $n \gg VC\text{dim}(Q)/(\epsilon\alpha^2)$, this offers at least $(0,\epsilon)$ privacy. Maybe can invert?

With probability $1 - \epsilon$, nothing is revealed about you, with prob ϵ, everything is revealed about you. We want: with prob 1, very little is revealed about you.
Idea: consider SQ’s from class of small VC dim

[BLR08] building on [KLNRS08]: Use this with the “exponential mechanism”: Explicit distribute over sets of size $m = O(\text{VCdim}(Q)/\alpha^2)$

$$\Pr(S') \propto e^{-O(\epsilon n \text{ penalty}(S'))}$$

- This satisfies privacy because changing one entry in S can cause penalty(S') to change by at most $1/n$.
- But will it produce an S' of low penalty?
Idea: consider SQ’s from class of small VC dim

[BLR08] building on [KLNRS08]: Use this with the “exponential mechanism”: Explicit distrib over sets of size $m = O(\text{VCdim}(Q)/\alpha^2)$

$$\Pr(S') \propto e^{-O(\epsilon n \text{ penalty}(S'))}$$

Penalty(S') = $\max_{S,S'}(\text{gap}(Q))$

- Solve for n s.t. bad S' (penalty $> \alpha$) have prob $\ll 1/2^md$.
- $\epsilon n \alpha \gg md = O(\frac{\text{VCdim}(Q)}{\alpha^2})d$. $n \gg \frac{\text{VCdim}(Q)d}{\epsilon \alpha^3}$ is sufficient.