Learning and Game Theory

• Zero-sum games, Minimax Optimality & Minimax Thm; Connection to Boosting & Regret Minimization
• General-sum games, Nash equilibrium and Correlated equilibrium; Internal/Swap Regret Minimization
Game theory

- Field developed by economists to study social & economic interactions.
 - Wanted to understand why people behave the way they do in different economic situations. Effects of incentives. Rational explanation of behavior.
Game theory

- Field developed by economists to study social & economic interactions.
 - Wanted to understand why people behave the way they do in different economic situations. Effects of incentives. Rational explanation of behavior.
- “Game” = interaction between parties with their own interests. Could be called “interaction theory”.
- Important for understanding/improving large systems:
 - Internet routing, social networks, e-commerce
 - Problems like spam etc.
Game Theory: Setting

- Have a collection of participants, or *players*.
- Each has a set of choices, or *strategies* for how to play/behave.
- Combined behavior results in *payoffs* (satisfaction level) for each player.

Start by talking about important case of 2-player zero-sum games.
Consider the following scenario…

- Shooter has a penalty shot. Can choose to shoot left or shoot right.

- Goalie can choose to dive left or dive right.

- If goalie guesses correctly, (s)he saves the day. If not, it’s a goooooaaaallll!

- Vice-versa for shooter.
2-Player Zero-Sum games

- Two players Row and Col. Zero-sum means that what's good for one is bad for the other.

- Game defined by matrix with row for each of Row's options and a column for each of Col's options. Matrix R gives row player's payoffs, C gives column player's payoffs, $R + C = 0$.

- E.g., penalty shot [Matrix R]:

```
<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Right</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

GOAALLLL!!!
No goal
goalie
shooter
Minimax-optimal strategies

- Minimax optimal strategy is a (randomized) strategy that has the best guarantee on its expected payoff, over choices of the opponent. [maximizes the minimum]
- I.e., the thing to play if your opponent knows you well.

```
<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Right</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```

GOAALLLL!!!
Minimax-optimal strategies

- What are the minimax optimal strategies for this game?

Minimax optimal strategy for shooter is 50/50. Guarantees expected payoff $\geq \frac{1}{2}$ no matter what goalie does.

Minimax optimal strategy for goalie is 50/50. Guarantees expected shooter payoff $\leq \frac{1}{2}$ no matter what shooter does.

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Right</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- GOAALLLL!!!
- No goal
Minimax-optimal strategies

• How about for goalie who is weaker on the left?

Minimax optimal for shooter is \((2/3, 1/3)\). Guarantees expected gain at least \(2/3\).
Minimax optimal for goalie is also \((2/3, 1/3)\). Guarantees expected loss at most \(2/3\).
Minimax Theorem (von Neumann 1928)

- Every 2-player zero-sum game has a unique value V.
- Minimax optimal strategy for R guarantees R’s expected gain at least V.
- Minimax optimal strategy for C guarantees C’s expected loss at most V.

Counterintuitive: Means it doesn’t hurt to publish your strategy if both players are optimal. (Borel had proved for symmetric 5x5 but thought was false for larger games)
Minimax-optimal strategies

- Claim: no-regret strategies will do nearly as well or better against any sequence of opponent plays.
 - Do nearly as well as best fixed choice in hindsight.
 - Implies do nearly as well as best distrib in hindsight
 - Implies do nearly as well as minimax optimal!
Proof of minimax thm using RWM

• Suppose for contradiction it was false.
• This means some game G has $V_C > V_R$:
 - If Column player commits first, there exists a row that gets the Row player at least V_C.
 - But if Row player has to commit first, the Column player can make him get only V_R.

• Scale matrix so payoffs to row are in $[-1,0]$. Say $V_R = V_C - \delta$.
Proof contd

• Now, consider playing randomized weighted-majority alg as Row, against Col who plays optimally against Row's distrib.

• In T steps, in expectation,
 - Alg gets $\geq \text{[best row in hindsight]} - 2(T\log n)^{1/2}$
 - BRiH $\geq T \cdot V_C$ [Best against opponent’s empirical distribution]
 - Alg $\leq T \cdot V_R$ [Each time, opponent knows your randomized strategy]
 - Gap is δT. Contradicts assumption once $\delta T > 2(T\log n)^{1/2}$, or $T > 4\log(n)/\delta^2$.

\[V_C \quad V_R \]
What if two regret minimizers play each other?

• Then their time-average strategies must approach minimax optimality.

 1. If Row’s time-average is far from minimax, then Col has strategy that in hindsight substantially beats value of game.
 2. So, by Col’s no-regret guarantee, Col must substantially beat value of game.
 3. So Row will do substantially worse than value.
Boosting & game theory

• Suppose I have an algorithm A that for any distribution (weighting fn) over a dataset S can produce a rule $h \in H$ that gets $< 45\%$ error.

• Adaboost gives a way to use such an A to get error $\rightarrow 0$ at a good rate, using weighted votes of rules produced.

• How can we see that this is even possible?
Let’s assume the class H is finite.

Think of a matrix game where columns indexed by examples in S, rows indexed by h in H.

$M_{ij} = 1$ if $h_i(x_j)$ is correct, else $M_{ij} = -1$.

Boosting & game theory
Boosting & game theory

- Assume for any D over cols, exists row s.t. $E[\text{payoff}] \geq 0.1$.
- Minimax implies exists a weighting over rows s.t. for every x_i, expected payoff ≥ 0.1.
- So, $\text{sgn}(\sum_t \alpha_t h_t)$ is correct on all x_i. Weighted vote has L_1 margin at least 0.1.
- AdaBoost gives you a way to get this with only access via weak learner. But this at least implies existence...

Entry $ij = 1$ if $h_i(x_j)$ is correct, -1 if incorrect
General-Sum Games
General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., “what side of sidewalk to walk on?“:

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>(1,1)</td>
<td>(-1,-1)</td>
</tr>
<tr>
<td>Right</td>
<td>(-1,-1)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>you</th>
<th>person walking towards you</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
</tbody>
</table>
A Nash Equilibrium is a stable pair of strategies (could be randomized).

Stable means that neither player has incentive to deviate on their own.

E.g., “what side of sidewalk to walk on”:

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>(1,1)</td>
<td>(-1,-1)</td>
</tr>
<tr>
<td>Right</td>
<td>(-1,-1)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>

NE are: both left, both right, or both 50/50.
Existence of NE

• Nash (1950) proved: any general-sum game must have at least one such equilibrium.
 - Might require randomized strategies (called “mixed strategies”)
• This also yields minimax thm as a corollary.
 - Pick some NE and let V = value to row player in that equilibrium.
 - Since it’s a NE, neither player can do better even knowing the (randomized) strategy their opponent is playing.
 - So, they’re each playing minimax optimal.
How to prove existence of NE

- Proof will be non-constructive.
- Notation:
 - Assume an nxn matrix.
 - Use \((p_1,\ldots,p_n)\) to denote mixed strategy for row player, and \((q_1,\ldots,q_n)\) to denote mixed strategy for column player.
Proof

• We’ll start with Brouwer’s fixed point theorem.
 - Let S be a bounded convex region in \mathbb{R}^n and let $f : S \to S$ be a continuous function.
 - Then there must exist $x \in S$ such that $f(x) = x$.
 - x is called a “fixed point” of f.

• Simple case: S is the interval $[0,1]$.

• We will care about:
 - $S = \{(p,q) : p,q$ are legal probability distributions on $1,\ldots,n\}$. I.e., $S = \text{simplex}_n \times \text{simplex}_n$
Proof (cont)

- \(S = \{(p,q) : p, q \text{ are mixed strategies}\} \).
- Want to define \(f(p,q) = (p',q') \) such that:
 - \(f \) is continuous. This means that changing \(p \) or \(q \) a little bit shouldn't cause \(p' \) or \(q' \) to change a lot.
 - Any fixed point of \(f \) is a Nash Equilibrium.
- Then Brouwer will imply existence of NE.
Try #1

- What about \(f(p,q) = (p',q') \) where \(p' \) is best response to \(q \), and \(q' \) is best response to \(p \)?
- Problem: not continuous:
 - E.g., penalty shot: If \(p = (0.51, 0.49) \) then \(q' = (1,0) \). If \(p = (0.49, 0.51) \) then \(q' = (0,1) \).

\[
R = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}
\]
Try #1

• What about \(f(p,q) = (p', q') \) where \(p' \) is best response to \(q \), and \(q' \) is best response to \(p \)?
• Problem: also not necessarily well-defined:
 - E.g., if \(p = (0.5, 0.5) \) then \(q' \) could be anything.

\[
R = \begin{array}{cc}
0 & 1 \\
1 & 0 \\
\end{array}
\quad C = \begin{array}{cc}
0 & -1 \\
-1 & 0 \\
\end{array}
\]
Instead we will use...

- $f(p,q) = (p',q')$ such that:
 - q' maximizes $[(\text{expected gain wrt } p) - \|q-q'\|^2]$
 - p' maximizes $[(\text{expected gain wrt } q) - \|p-p'\|^2]$

Note: quadratic + linear = quadratic.
Instead we will use...

- $f(p,q) = (p',q')$ such that:
 - q' maximizes $[(\text{expected gain wrt } p) - \|q-q'\|^2]$
 - p' maximizes $[(\text{expected gain wrt } q) - \|p-p'\|^2]$

Note: quadratic + linear = quadratic.
Instead we will use...

- $f(p,q) = (p', q')$ such that:
 - q' maximizes $[(\text{expected gain wrt } p) - \|q-q'\|^2]$
 - p' maximizes $[(\text{expected gain wrt } q) - \|p-p'\|^2]$

- f is well-defined and continuous since quadratic has unique maximum and small change to p, q only moves this a little.

- Also fixed point = NE. (even if tiny incentive to move, will move little bit).

- So, that’s it!
Internal/Swap Regret and Correlated Equilibria
What if all players minimize regret?

- In zero-sum games, empirical frequencies quickly approaches minimax optimal.

- In general-sum games, does behavior quickly (or at all) approach a Nash equilibrium?
 - After all, a Nash Eq is exactly a set of distributions that are no-regret wrt each other. So if the distributions stabilize, they must converge to a Nash equil.

- Well, unfortunately, no.
A bad example for general-sum games

- Augmented Shapley game from [Zinkevich04]:
 - First 3 rows/cols are Shapley game (rock / paper / scissors but if both do same action then both lose).
 - 4th action “play foosball” has slight negative if other player is still doing r/p/s but positive if other player does 4th action too.
 - RWM will cycle among first 3 and have no regret, but do worse than only Nash Equilibrium of both playing foosball.

- We didn’t really expect this to work given how hard NE can be to find...
A bad example for general-sum games

• [Balcan-Constantin-Mehta12]:
 • Failure to converge even in Rank-1 games (games where $R+C$ has rank 1).
 • Interesting because one can find equilibria efficiently in such games.

Figure 4. c_i's of symmetric Shapley game with $a = 10, b = 1$
What can we say?

- If algorithms minimize "internal" or "swap" regret, then empirical distribution of play approaches correlated equilibrium.
 - Foster & Vohra, Hart & Mas-Colell,...
 - Though doesn’t imply play is stabilizing.

What are internal/swap regret and correlated equilibria?
More general forms of regret

1. “best expert” or “external” regret:
 - Given \(n \) strategies. Compete with best of them in hindsight.

2. “sleeping expert” or “regret with time-intervals”:
 - Given \(n \) strategies, \(k \) properties. Let \(S_i \) be set of days satisfying property \(i \) (might overlap). Want to simultaneously achieve low regret over each \(S_i \).

3. “internal” or “swap” regret: like (2), except that \(S_i = \) set of days in which we chose strategy \(i \).
Internal/swap-regret

- E.g., each day we pick one stock to buy shares in.
 - Don’t want to have regret of the form “every time I bought IBM, I should have bought Microsoft instead”.
- Formally, swap regret is wrt optimal function $f: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ such that every time you played action j, it plays $f(j)$.
Weird... why care?

"Correlated equilibrium"

- Distribution over entries in matrix, such that if a trusted party chooses one at random and tells you your part, you have no incentive to deviate.
- E.g., Shapley game.

\[
\begin{array}{ccc}
R & P & S \\
\hline
R & (-1,-1) & (1,1) & (1,-1) \\
P & (1,-1) & (-1,-1) & (-1,1) \\
S & (-1,1) & (1,-1) & (-1,-1) \\
\end{array}
\]

In general-sum games, if all players have low swap-regret, then empirical distribution of play is apx correlated equilibrium.
If all parties run a low swap regret algorithm, then empirical distribution of play is an apx correlated equilibrium.

- Correlator chooses random time $t \in \{1, 2, \ldots, T\}$. Tells each player to play the action j they played in time t (but does not reveal value of t).

- Expected incentive to deviate: $\sum_j \Pr(j) (\text{Regret} | j) = \text{swap-regret of algorithm}$

- So, this suggests correlated equilibria may be natural things to see in multi-agent systems where individuals are optimizing for themselves.
Correlated vs Coarse-correlated Eq

In both cases: a distribution over entries in the matrix. Think of a third party choosing from this distr and telling you your part as “advice”.

“Correlated equilibrium”

• You have no incentive to deviate, even after seeing what the advice is.

“Coarse-Correlated equilibrium”

• If only choice is to see and follow, or not to see at all, would prefer the former.

Low external-regret ⇒ apx coarse correlated equilib.
Algorithms for achieving low regret of this form:

- Foster & Vohra, Hart & Mas-Colell, Fudenberg & Levine.
- Will present method of [BM05] showing how to convert any “best expert” algorithm into one achieving low swap regret.
- Unfortunately, #steps to achieve low swap regret is $O(n \log n)$ rather than $O(\log n)$.
Can convert any “best expert” algorithm A into one achieving low swap regret. Idea:

- Instantiate one copy A_j responsible for expected regret over times we play j.

- Allows us to view p_j as prob we play action j, or as prob we play alg A_j.

- Give A_j feedback of $p_j c$.

- A_j guarantees $\sum_t (p_j^t c^t) \cdot q_j^t \leq \min_i \sum_t p_j^t c_i^t + \text{[regret term]}$

- Write as: $\sum_t p_j^t (q_j^t \cdot c^t) \leq \min_i \sum_t p_j^t c_i^t + \text{[regret term]}$
Can convert any “best expert” algorithm A into one achieving low swap regret. Idea:

- Instantiate one copy A_j responsible for expected regret over times we play j.

\[\sum_t p^t Q^t c^t \leq \sum_j \min_i \sum_t p_j^t c_i^t + n[\text{regret term}] \]

Our total cost

For each j, can move our prob to its own $i=f(j)$

- Write as: \[\sum_t p_j^t (q_j^t \cdot c^t) \leq \min_i \sum_t p_j^t c_i^t + [\text{regret term}] \]
Can convert any “best expert” algorithm A into one achieving low swap regret. Idea:

- Instantiate one copy A_j responsible for expected regret over times we play j.

- Sum over j, get:

$$
\sum_t p^t Q^t c^t \leq \sum_j \min_i \sum_t p_j^t c_i^t + n[\text{regret term}]
$$

- Get swap-regret at most n times orig external regret.

Our total cost

For each j, can move our prob to its own $i = f(j)$