An Introduction to the Theory of Machine Learning

Learning from noisy data, intro to SQ model

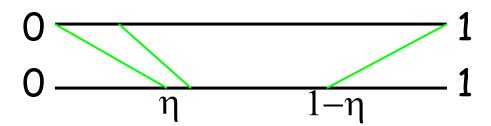
Avrim Blum 04/27/22

Learning when there is no perfect predictor

- Hoeffding/Chernoff bounds: minimizing training error will approximately minimize true error: just need $O(1/\epsilon^2)$ samples versus $O(1/\epsilon)$.
- · What about polynomial-time algorithms? Seems harder.
 - Given data set S, finding apx best conjunction is NP-hard.
 - Can do other things, like minimize hinge-loss, but may be a big gap wrt error rate ("0/1 loss").
- One way to make progress: make assumptions on the "noise" in the data. E.g., Random Classification Noise model.

Learning from Random Classification Noise

- PAC model, target $f \in C$, but assume labels from noisy channel.
- "noisy" oracle $EX^{\eta}(f,D)$. η is the noise rate. (think $\eta = \frac{1}{4}$)
 - Example x is drawn from D.
 - With probability 1- η see label $\ell(x) = f(x)$.
 - With probability η see label $\ell(x) = 1 f(x)$.
- E.g., if h has non-noisy error p, what is the noisy error rate? (If $\Pr_D[h(x) \neq f(x)] = p$, what is $\Pr_D[h(x) \neq \ell(x)]$?)
 - $p(1-\eta) + (1-p)\eta = \eta + p(1-2\eta)$.



Learning from Random Classification Noise

Algorithm A PAC-learns C from random classification noise if for any $f \in C$, any distrib D, any $\eta < 1/2$, any $\varepsilon, \delta > 0$, given access to $EX^{\eta}(f, D)$, A finds a hyp h that is ε -close to f, with probability $\geq 1-\delta$. Want time poly $(1/\varepsilon, 1/\delta, 1/(1-2\eta), n$, size(f))

- Q: is this a plausible goal? We are asking the learner to get closer to f than the data is.
- A: OK because noisy error rate is linear in true error rate (squashed by $1-2\eta$)

Notation

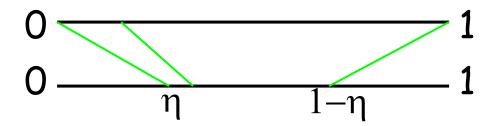
- Use "Pr[...]" for probability with respect to non-noisy distribution.
- Use " $Pr_{\eta}[...]$ " for probability with respect to noisy distribution.

Learning OR-functions (assume monotone)

- Let's assume noise rate η is known.
- Say $p_i = Pr[f(x)=0 \text{ and } x_i=1]$ (if x_i in target then $p_i = 0$)
- Any h that includes all x_i such that $p_i=0$ and no x_i such that $p_i > \varepsilon/n$ is good. (e.g., think of $f = x_1 \vee x_3 \vee x_5$)
- So, just need to estimate p_i to $\pm \frac{\epsilon}{2n}$.
 - Rewrite as $p_i = Pr[f(x)=0|x_i=1] \times Pr[x_i=1]$.
 - 2^{nd} part unaffected by noise (and if tiny, then p_i is small for sure). Define q_i as 1^{st} part.
 - Then $\Pr_{\eta}[\ell(x)=0|x_i=1] = q_i(1-\eta)+(1-q_i)\eta = \eta+q_i(1-2\eta)$.
 - So, enough to approx LHS to $\pm O\left(\frac{\epsilon}{2n}(1-2\eta)\right)$.

Learning OR-functions (assume monotone)

• If noise rate not known, can estimate with smallest value of $\Pr_{n}[\ell(x)=0|x_{i}=1]$.



(e.g.,
$$f = x_1 \lor x_3 \lor x_5$$
)

Generalizing the algorithm

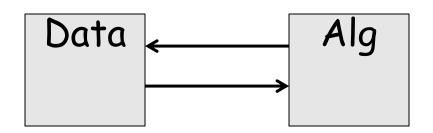
Basic idea of algorithm was:

- See how can learn in non-noisy model by asking about probabilities of certain events with some "slop".
- Try to learn in noisy model by breaking events into:
 - Parts predictably affected by noise.
 - Parts unaffected by noise.

Let's formalize this in notion of "statistical query" (SQ) algorithm. Will see how to convert any SQ algorithm to work with noise.

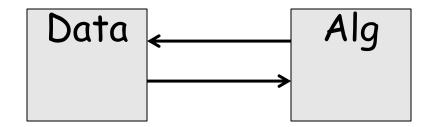
The Statistical Query Model

- · No noise.
- Algorithm asks: "what is the probability a labeled example will have property χ ? Please tell me up to additive error τ ." (e.g., $x_i = 1$ and label is negative)
 - Formally, $\chi: X \times \{0,1\} \to \{0,1\}$. Must be poly-time computable. $\tau \geq 1/\text{poly}(...)$.
 - Let $P_{\chi} = \Pr_{\mathbf{x} \sim D} [\chi(\mathbf{x}, \mathbf{f}(\mathbf{x})) = 1].$
 - World responds with $P'_{\chi} \in [P_{\chi} \tau, P_{\chi} + \tau]$. [can extend to $E[\chi]$ for [0,1]-valued or vector-valued χ]
- May repeat poly(...) times. Can also ask for unlabeled data. Must output h of error $\leq \varepsilon$. No δ in this model.



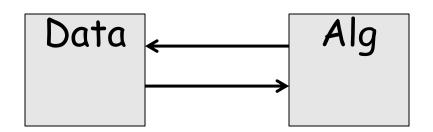
The Statistical Query Model

- Examples of queries:
 - What is the probability that $x_i=1$ and label is negative?
 - What is the error rate of my current hypothesis h? $[\chi(x,\ell)=1 \text{ iff } h(x) \neq \ell]$
- Get back answer to $\pm \tau$. Can simulate from $\approx 1/\tau^2$ examples. [That's why need $\tau \geq 1/\text{poly}(...)$.]
- To learn OR-functions, ask for $\Pr[x_i=1 \text{ and } f(x)=0]$ with $\tau=\frac{\epsilon}{2n}$. Produce OR of all x_i s.t. $P_\chi' \leq \frac{\epsilon}{2n}$.



The Statistical Query Model

- Many algorithms can be simulated with statistical queries:
 - Perceptron: ask for $E[f(x)x : h(x) \neq f(x)]$ (formally define vector-valued $\chi = f(x)x$ if $h(x) \neq f(x)$, and 0 otherwise. Then divide by $Pr[h(x) \neq f(x)]$.)
 - Hill-climbing type algorithms: what is error rate of h? What would it be if I made this tweak?
- Properties of SQ model:
 - Can automatically convert to work in presence of classification noise.
 - Can give a nice characterization of what can and cannot be learned in it.



SQ-learnable ⇒ (PAC+Noise)-learnable

- Given query χ , need to estimate from noisy data. Idea:
 - Break into part predictably affected by noise, and part unaffected.
 - Estimate these parts separately.
 - Can draw fresh examples for each query or estimate many queries from same sample if VCDim of query space is small.
- Running example: $\chi(x,\ell)=1$ iff $x_i=1$ and $\ell=0$.

How to estimate $Pr[\chi(x,f(x))=1]$?

- Let CLEAN = $\{x : \chi(x,0) = \chi(x,1)\}$
- Let NOISY = $\{x : \chi(x,0) \neq \chi(x,1)\}$
 - What are these for " $\chi(x,\ell)=1$ iff $x_i=1$ and $\ell=0$ "?
- Now we can write:
 - $Pr[\chi(x,f(x))=1] = Pr[\chi(x,f(x))=1 \text{ and } x \in CLEAN] + Pr[\chi(x,f(x))=1 \text{ and } x \in NOISY].$
- Step 1: first part is easy to estimate from noisy data (easy to tell if $x \in CLEAN$).
- What about the 2nd part?

How to estimate $Pr[\chi(x,f(x))=1]$?

- Let CLEAN = $\{x : \chi(x,0) = \chi(x,1)\}$
- Let NOISY = $\{x : \chi(x,0) \neq \chi(x,1)\}$
 - What are these for " $\chi(x,\ell)=1$ iff $x_i=1$ and $\ell=0$ "?
- · Now we can write:
 - $Pr[\chi(x,f(x))=1] = Pr[\chi(x,f(x))=1 \text{ and } x \in CLEAN] + Pr[\chi(x,f(x))=1 \text{ and } x \in NOISY].$
- Can estimate $Pr[x \in NOISY]$.
- Also estimate $P_n \equiv Pr_n[\chi(x,\ell)=1 \mid x \in NOISY]$.
- Want $P \equiv Pr[\chi(x,f(x))=1 \mid x \in NOISY]$.
- Write $P_{\eta} = P(1-\eta) + (1-P)\eta = \eta + P(1-2\eta)$.
- So, $P = (\dot{P}_n \eta)/(1-2\eta)$.
 - Just need to estimate P_n to additive error $\tau(1-2\eta)$.
 - If don't know η , can have "guess and check" wrapper.

So, any SQ algorithm can automatically be simulated in the presence of random classification noise

Characterizing what's learnable using SQ algorithms

• Say that f,g uncorrelated if $\Pr_{x \sim D}[f(x) = g(x)] = \frac{1}{2}$.

Def: the SQ-dimension of a class C wrt D is the size of the largest set $C' \subseteq C$ s.t. for all $f, g \in C'$,

$$\left| \Pr_{D}[f(x) = g(x)] - \frac{1}{2} \right| < \frac{1}{|C'|}.$$

(size of largest set of nearly uncorrelated functions in C)

- Theorem 1: if $SQDIM_D(C) = poly(n)$ then you can weak-learn C over D by SQ algs. [error rate $\leq \frac{1}{2} \frac{1}{poly(n)}$]
- Theorem 2: if $SQDIM_D(C)$ > poly(n) then you can't weak-learn C over D by SQ algs.

Characterizing what's learnable using SQ algorithms

- Key tool: Fourier analysis of boolean functions.
- Sounds scary but it's a cool idea!
- Let's think of functions from $\{0,1\}^n \rightarrow \{-1,1\}$.
- View function f as a vector of 2ⁿ entries:

$$(\sqrt{D[000]}f(000), \sqrt{D[001]}f(001), \dots, \sqrt{D[x]}f(x), \dots)$$

- What is $\langle f, f \rangle$? What is $\langle f, g \rangle$?
- What is an orthonormal basis?