TTIC 31250
An Introduction to the Theory of Machine Learning

Boosting

Avrim Blum
04/25/22
Boosting: a practical algorithmic tool and a statement about learning in the PAC model itself
Definition: Algorithm A is a weak-learner with edge γ for class C if: for any distribution D over examples labeled by some target $f \in C$, whp A produces a hypothesis h with $\text{err}_D(h) \leq 1/2 - \gamma$. (think of $\gamma = 0.1$)

Note: Ignoring δ parameter throughout the lecture since it can be handled easily (hwk 2).

Theorem: Given a weak-learner A with edge γ for class C, we can produce an alg A' that achieves a PAC guarantee for class C (whp produces hypothesis with error $\leq \epsilon$) using $O\left(\frac{1}{\gamma^2} \log \frac{1}{\epsilon}\right)$ calls to A. A' is efficient if A is.

“Weak learning \Rightarrow Strong learning”
Imagine you want a highly accurate algorithm to predict y from x.

So, you publish a large dataset S_1 of (x, y) pairs and ask if anyone can find an h_1 of error $\leq 40\%$. (And say we require h_1 to be “simple” so we know it’s not overfitting)

Now, you use h_1 to create a new dataset S_2 (by focusing more on the problematic data for h_1) and ask if anyone can find an h_2 of error $\leq 40\%$ on S_2.

And so on.

You can do this and combine the h_i s.t either (a) you drive your error down to 0 or else (b) you reach a hard dataset that nobody can do much better than random guessing on.
Preliminaries

• Assume we want to learn some unknown target function f over distribution D.

• Assume we have a weak-learner A with edge γ that uses hypotheses from some class of VC-dim d. (A should be able to achieve error $\leq 1/2 - \gamma$ for learning f over any reweighting of D)

• We will end up running A for T times producing hypotheses $h_1, ..., h_T$ and combining them into a single rule.

• By problem 3 on current hwk, the set of such combinations has VC-dim $O(Td \log Td)$.

• This will allow us to do all this on a sample of size $\tilde{O}\left(\frac{Td}{\epsilon}\right)$.

(\tilde{O} notation hides logarithmic factors)
• We will draw a training sample S of size $m = \tilde{O}\left(\frac{Td}{\epsilon}\right)$.

• Assume that given any weighting of the points in S, A will return a hypothesis h of error at most $1/2 - \gamma$ over the distribution induced by that weighting. (ignoring δ)

• Will show can produce h with $err_S(h) = 0$ for $T = O\left(\frac{\log m}{\gamma^2}\right)$.

• Just need $m \gg \frac{d \log m}{\epsilon \gamma^2} \approx \frac{d \log\left(\frac{d}{\epsilon \gamma}\right)}{\epsilon \gamma^2}$.
Boosting algo (Adaboost-light)

1. Given labeled sample $S = \{x_1, \ldots, x_m\}$, initialize each example x_i to have weight $w_i = 1$. Let $w = (w_1, \ldots, w_n)$.

2. For $t = 1, \ldots, T$ do:
 a. Call A on the distribution D_t over S induced by w.
 b. Receive hypothesis h_t of error $\leq 1/2 - \gamma$ over D_t.
 c. Multiply the weight of each example misclassified by h_t by $\alpha = \frac{0.5 + \gamma}{0.5 - \gamma}$. Leave the other weights alone.

3. Output the majority-vote classifier $MAJ(h_1, \ldots, h_T)$. Assume T is odd so no ties.

Thm: $T = \Theta \left(\frac{\log m}{\gamma^2} \right)$ is sufficient s.t. $err_S(MAJ(h_1, \ldots, h_T)) = 0$.
Example

\(\text{err}_{D_1}(h_1) = \frac{1}{4}\)

\[\gamma = \frac{1}{4}, \alpha = \frac{1/2 + 1/4}{1/2 - 1/4} = 3\]
Example

\[err_{D_1}(h_1) = \frac{1}{4} \]

\[\begin{array}{cccccc}
+ & + & + & + & + & + \\
\hline
& & & & & \\
- & - & - & - & - & - \\
& & & & & \\
- & - & - & - & - & - \\
& & & & & \\
+ & + & + & + & + & + \\
\end{array} \]

\[\frac{1}{4} \times 3 = \frac{3}{4} \]

\[err_{D_2}(h_2) = \frac{1/4}{1/4 + 1/2 + 3/4} = \frac{1}{6} \]

\[\gamma = \frac{1}{4}, \alpha = \frac{1/2 + 1/4}{1/2 - 1/4} = 3 \]
Example

\(\gamma = \frac{1}{4}, \alpha = \frac{1/2 + 1/4}{1/2 - 1/4} = 3 \)

\[
\begin{align*}
err_{D_1}(h_1) &= \frac{1}{4} \\
err_{D_2}(h_2) &= \frac{1/4}{1/4 + 1/2 + 3/4} = \frac{1}{6} \\
err_{D_3}(h_3) &= \frac{1/2}{3/4 + 1/2 + 3/4} = \frac{1}{4}
\end{align*}
\]
Example

\[\gamma = \frac{1}{4}, \alpha = \frac{1/2 + 1/4}{1/2 - 1/4} = 3 \]

\[\text{err}_{D_1}(h_1) = \frac{1}{4} \]

\[\text{err}_{D_2}(h_2) = \frac{1/4}{1/4 + 1/2 + 3/4} = \frac{1}{6} \]

\[\text{err}_{D_3}(h_3) = \frac{1/2}{3/4 + 1/2 + 3/4} = \frac{1}{4} \]
Boosting algo (Adaboost-light)

1. Given labeled sample \(S = \{x_1, ..., x_m\} \), initialize each example \(x_i \) to have weight \(w_i = 1 \). Let \(w = (w_1, ..., w_n) \).

2. For \(t = 1, ..., T \) do:
 a. Call \(A \) on the distribution \(D_t \) over \(S \) induced by \(w \).
 b. Receive hypothesis \(h_t \) of error \(\leq 1/2 - \gamma \) over \(D_t \).
 c. Multiply the weight of each example misclassified by \(h_t \) by \(\alpha = \frac{0.5+\gamma}{0.5-\gamma} \). Leave the other weights alone.

3. Output the majority-vote classifier \(MAJ(h_1, ..., h_T) \).
 Assume \(T \) is odd so no ties.

Thm: \(T = O \left(\frac{\log m}{\gamma^2} \right) \) is sufficient s.t. \(err_S(MAJ(h_1, ..., h_T)) = 0 \).
Boosting algo (Adaboost-light)

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

“X” = mistake. Weight of $x_i = \alpha^{\#mistes in column i}$

BTW, does this remind you of anything we’ve seen so far?
Proof of Boosting Theorem

Thm: $T = O\left(\frac{\log m}{\gamma^2}\right)$ is sufficient s.t. $err_S(MAJ(h_1, \ldots, h_T)) = 0$.

Proof:

• First, if $MAJ(h_1, \ldots, h_T)$ makes a mistake on any x_i then its final weight must be greater than $\alpha^{T/2}$.

• Let W_t be total weight after update t. $W_0 = m$.

• By the weak-learning assumption, h_t has error $\leq 1/2 - \gamma$ on D_t. So, at most $1/2 - \gamma$ fraction of weight multiplied by α.

• So, $W_{t+1} \leq \left(\alpha \left(\frac{1}{2} - \gamma\right) + \left(\frac{1}{2} + \gamma\right)\right) W_t = (1 + 2\gamma) W_t$.

• So if $err_S(\ldots) > 0$ then $\alpha^{T/2} \leq W_T \leq (1 + 2\gamma)^T m$.

So, $1 \leq \alpha^{-T/2}(1 + 2\gamma)^T m$.
Proof of Boosting Theorem

Thm: \(T = O \left(\frac{\log m}{\gamma^2} \right) \) is sufficient s.t. \(err_S(MAJ(h_1, \ldots, h_T)) = 0 \).

Proof:

• Substituting \(\alpha = \frac{1/2 + \gamma}{1/2 - \gamma} = \frac{1 + 2\gamma}{1 - 2\gamma} \), we get:

\[
1 \leq (1 - 2\gamma)^{T/2} (1 + 2\gamma)^{T/2} m = (1 - 4\gamma^2)^{T/2} m \leq e^{-2\gamma^2 T m}.
\]

• Once \(T > \frac{\ln m}{2\gamma^2} \), right-hand-side is less than 1. Done.

• So if \(err_S(\ldots) > 0 \) then \(\alpha^{T/2} \leq W_T \leq (1 + 2\gamma)^T m \).

So, \(1 \leq \alpha^{-T/2} (1 + 2\gamma)^T m \).
Thm: $T = O\left(\frac{\log m}{\gamma^2}\right)$ is sufficient s.t. $err_S(MAJ(h_1, ..., h_T)) = 0$.

Proof:

- Substituting $\alpha = \frac{1/2 + \gamma}{1/2 - \gamma} = \frac{1 + 2\gamma}{1 - 2\gamma}$, we get:

 $$1 \leq (1 - 2\gamma)^T/2 (1 + 2\gamma)^T/2 m = (1 - 4\gamma^2)^T/2 m \leq e^{-2\gamma^2 T} m.$$

- Once $T > \frac{\ln m}{2\gamma^2}$, right-hand-side is less than 1. Done.

- More generally, after any T steps, the fraction of mistakes is at most $e^{-2\gamma^2 T}$.

So, $1 \leq \alpha^{-T/2} (1 + 2\gamma)^T m$.
Some Reflections

• Suppose each h_t flipped a coin for each example x_i, predicting correctly with probability $1/2 + \gamma$.
 (I.e., suppose they all made independent errors)

• Then it’s clear that taking majority vote is good. By Hoeffding, for any given x_i, $\Pr[\text{MAJ is incorrect}] \leq e^{-2\gamma^2 T}$.

So we actually just proved Hoeffding bounds, at least for $1/2 + \gamma$ vs $1/2$. (Take limit as # examples $\to \infty$, so that fraction of errors for each h_t matches expectation)

• More generally, after any T steps, the fraction of mistakes is at most $e^{-2\gamma^2 T}$.
More Reflections

• Consider a zero-sum game with examples as columns and hypotheses in H as rows.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th></th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>\times</td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_2</td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_3</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
</tbody>
</table>

Rows represent all h in the class used by A

• If row plays h_i and column plays x_j then row wins if $h_i(x_j)$ is correct, and column wins if $h_i(x_j)$ is incorrect.
More Reflections

- Consider a zero-sum game with examples as columns and hypotheses in H as rows.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>h_2</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>h_3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- We are given that for any distrib D over columns (mixed strategy for the column player) there exists a row that wins with prob $\geq 1/2 + \gamma$ (payoff $\geq 1/2 + \gamma$)
More Reflections

• Consider a zero-sum game with examples as columns and hypotheses in \(H \) as rows.

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>(x_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>(\times)</td>
</tr>
<tr>
<td>(h_2)</td>
<td>(\times)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>(\times)</td>
</tr>
<tr>
<td>(h_3)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>(\times)</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>.</td>
</tr>
<tr>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

• By Minimax Thm, there exists a distribution \(P \) over \(h_i \) that wins with prob \(\geq 1/2 + \gamma \) for any \(x_j \).

• So, whp a large random sample from \(P \) will give correct majority vote on all \(x_j \). (One way to see boosting is possible in principle)
More Reflections

- Consider a zero-sum game with examples as columns and hypotheses in H as rows.

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>.</th>
<th>.</th>
<th>.</th>
<th>h_1</th>
<th>h_2</th>
<th>h_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>h_2</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>h_3</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>...</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
</tr>
<tr>
<td></td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\times</td>
</tr>
</tbody>
</table>

- In fact, this is just like RWM versus a best-response oracle, except our focus is on properties of the majority vote over the choices of the best-response oracle.
Margin Analysis

• Empirically noticed that you can keep running the booster past the point of perfect classification of S, and generalization doesn’t get worse.

• One way to explain: “L_1 margins” or “margin of the vote”
Margin Analysis

Argument sketch:

• As $T \to \infty$, row player’s strategy approaches minimax optimal (for all $x_j \in S$, $1/2 + \gamma$ of h_i vote correctly).

• Define h' as the randomized predictor: “given x, select $O \left(\frac{1}{\gamma^2 \log \frac{1}{\epsilon}} \right)$ h_i at random from h and take their maj vote”

• So, $err_S(h') \leq \epsilon/2$.

• Also, $err_D(h') \geq err_D(h)/2$. (If $h(x)$ is wrong, then at least 50% chance that $h'(x)$ is wrong too)

• But h' isn’t overfitting since whp no small majority-votes are overfitting and this is just a randomization over them. So h isn’t overfitting by much either.