An Introduction to the Theory of Machine Learning

VC-dimension II

Avrim Blum 04/18/22

Chernoff and Hoeffding bounds

Consider m flips of a coin of bias p. Let N_{heads} be the observed # heads. Let $\varepsilon, \alpha \in [0,1]$.

Hoeffding bounds:

- $\Pr[N_{heads}/m > p + \varepsilon] \le e^{-2m\varepsilon^2}$, and $\Pr[N_{heads}/m .$

Chernoff bounds:

- $Pr[N_{heads} / m > p(1+\alpha)] \le e^{-mp\alpha^2/3}$, and
- $\Pr[N_{heads} / m \cdot p(1-\alpha)] \leq e^{-mp\alpha^2/2}$.

E.g,

- $Pr[N_{heads} > 2(expectation)] \le e^{-(expectation)/3}$.
- $Pr[N_{heads} < (expectation)/2] \le e^{-(expectation)/8}$

Typical use of bounds

Thm: If
$$|S| \ge \frac{1}{2\epsilon^2} \left[\ln(2|H|) + \ln\left(\frac{1}{\delta}\right) \right]$$
, then with prob $\ge 1 - \delta$, all $h \in H$ have $|\text{err}_{D}(h) - \text{err}_{S}(h)| < \epsilon$.

- Proof: Just apply Hoeffding + union bound.
 - Chance of failure at most $2|H|e^{-2|S|\epsilon^2}$.
 - Set to δ . Solve.

Hoeffding bounds:

- $Pr[N_{heads}/m > p + \varepsilon] \le e^{-2m\varepsilon^2}$
- $Pr[N_{heads}/m \cdot p \varepsilon] \le e^{-2m\varepsilon^2}$

Effective number of hypotheses

Define: H[S] = set of all different ways to label points in S using concepts in H.

Define H[m] = maximum |H[S]| over datasets S of m points.

E.g., linear separators in the plane: H[3]=8, H[4]=14.

Shattering

- Defn: A set of points S is shattered by H if there are concepts in H that label S in all of the 2^{|S|} possible ways.
 - In other words, all possible ways of classifying points in S are achievable using concepts in H.
- E.g., any 3 non-collinear points in \mathbb{R}^2 can be shattered by linear threshold functions, but no set of 4 points can be.

VC-dimension

The VC-dimension of a hypothesis class H is the size of the largest set of points that can be shattered by H. I.e., largest d s.t. $H[d] = 2^d$.

So, if the VC-dimension is d, that means there exists a set of d points that can be shattered, but no set of d+1 points can be shattered.

- Theorem 1: For any class H, distribution D, if $m = |S| > \frac{2}{\epsilon} \left[\log_2(2H[2m]) + \log_2 \frac{1}{\delta} \right]$, then with prob. $1-\delta$, all $h \in H$ with error > ϵ are inconsistent with data.
- Theorem 2 (Sauer's lemma):

$$H[m] \leq \sum_{i=0}^{VCdim(H)} {m \choose i} = O(m^{VCdim(H)}).$$

· Corollary 3: can replace bound in Thm 1 with

$$O\left(\frac{1}{\epsilon}\left[VCdim(H)\log\left(\frac{1}{\epsilon}\right) + \log\left(\frac{1}{\delta}\right)\right]\right)$$

• Theorem 4: For any alg A, class H, exists distrib D and target in H such that if $|S| < \frac{VCdim(H)-1}{8\epsilon}$ then $E[err_D(A)] \ge \epsilon$.

- Theorem 1: For any class H, distribution D, if m=|S| > $(2/\epsilon)[\log_2(H[2m]) + \log_2(2/\delta)]$, then with prob. 1- δ , all heH with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.
- Proof (Step 1):
 - Given a set S of m examples, define $A_S = \text{event that}$ exists $h \in H$ with $err_D(h) \ge \epsilon$ but $err_S(h) = 0$. Want to show $\Pr_{S \sim D^m}[A_S] \le \delta$.
 - Now, consider drawing two sets S,S' of m examples each. Let $B_{S,S'}=$ event that exists $h\in H$ with $err_S,(h)\geq \frac{\epsilon}{2}$ but $err_S(h)=0$. Claim: $\Pr_{S,S'\sim D^m}[B_{S,S'}]\geq \frac{1}{2}\Pr_{S\sim D^m}[A_S]$.
 - **Proof:** $\Pr[B] \ge \Pr[A] * \Pr[B|A]$. $\Pr[B|A] \ge \frac{1}{2}$ by Chernoff so long as $m \ge \frac{8}{\epsilon}$. So, $\Pr[B] \ge 1/2 * \Pr[A]$.

- Theorem 1: For any class H, distribution D, if m=|S| > $(2/\epsilon)[\log_2(H[2m]) + \log_2(2/\delta)]$, then with prob. 1- δ , all heH with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.
- Proof (Step 1):
 - Given a set S of m examples, define $A_S = \text{event that}$ exists $h \in H$ with $err_D(h) \ge \epsilon$ but $err_S(h) = 0$. Want to show $\Pr_{S \sim D^m}[A_S] \le \delta$.
 - Now, consider drawing two sets S,S' of m examples each. Let $B_{S,S'}=$ event that exists $h\in H$ with $err_{S'}(h)\geq \frac{\epsilon}{2}$ but $err_{S}(h)=0$. Claim: $\Pr_{S,S'\sim D^m}[B_{S,S'}]\geq \frac{1}{2}\Pr_{S\sim D^m}[A_S]$.
 - So suffices to show $Pr[B] \le \delta/2$.

- Theorem 1: For any class H, distribution D, if m=|S| > $(2/\epsilon)[\log_2(H[2m]) + \log_2(2/\delta)]$, then with prob. 1- δ , all heH with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.
- Proof (Step 2):
 - Now, consider a 3^{rd} experiment. Draw a set S'' of 2m examples, then randomly partition into S,S' of m each.
 - Let $B_{S'',S,S'}^*$ = event that exists $h \in H$ with $err_{S'}(h) \ge \frac{\epsilon}{2}$ but $err_{S}(h) = 0$. Claim: $\Pr_{S'' \sim D^{2m},S,S'}\left[B_{S'',S,S'}^*\right] = \Pr_{S,S' \sim D^m}\left[B_{S,S'}\right]$. (think of examples as sealed envelopes)
 - So, it suffices to show $\Pr_{S'' \sim D^{2m}, S, S'} \left[B_{S'', S, S'}^* \right] \leq \delta/2$.
 - Will actually prove: for any |S''| = 2m, $\Pr_{S,S'}\left[B_{S'',S,S'}^*\right] \le \delta/2$.

- Theorem 1: For any class H, distribution D, if m=|S| > $(2/\epsilon)[\log_2(H[2m]) + \log_2(2/\delta)]$, then with prob. 1- δ , all heH with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.
- To show: for any S'' of 2m examples, $\Pr_{S,S'}\left[B_{S'',S,S'}^*\right] \leq \delta/2$.
 - Key idea: Now that S'' is fixed, at most H[2m] labelings to worry about. For each one, show that its chance of being perfect on S but error $\geq \epsilon/2$ on S' is low (over the random partition into S, S'). Then apply union bound.
 - So, fix some labeling $h \in H[S'']$. Can assume h makes at least $\epsilon m/2$ mistakes in S'' (else prob of bad event is 0).
 - When we split S'' into S, S', what's the chance all these mistakes go into S'?

- Theorem 1: For any class H, distribution D, if m=|S| > $(2/\epsilon)[\log_2(H[2m]) + \log_2(2/\delta)]$, then with prob. 1- δ , all heH with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.
- To show: for any S" of 2m examples, $\Pr_{S,S'}\left[B_{S'',S,S'}^*\right] \leq \delta/2$.
 - h makes at least $\epsilon m/2$ mistakes in S". What's the chance all these mistakes go into S'?
 - Let's partition S'' by first randomly pairing the points together $(a_1,b_1),\ldots,(a_m,b_m)$. Then for each pair i, flip a coin: if heads, $a_i \to S, b_i \to S'$; if tails, $a_i \to S', b_i \to S$.

- Theorem 1: For any class H, distribution D, if m=|S| > $(2/\epsilon)[\log_2(H[2m]) + \log_2(2/\delta)]$, then with prob. 1- δ , all heH with $err_D(h) \ge \epsilon$ have $err_S(h) > 0$.
- To show: for any S" of 2m examples, $\Pr_{S,S'}\left[B_{S'',S,S'}^*\right] \leq \delta/2$.
 - h makes at least $\epsilon m/2$ mistakes in S". What's the chance all these mistakes go into S'?
 - Let's partition S'' by first randomly pairing the points together $(a_1, b_1), ..., (a_m, b_m)$. Then for each pair i, flip a coin: if heads, $a_i \rightarrow S, b_i \rightarrow S'$; if tails, $a_i \rightarrow S', b_i \rightarrow S$.
 - If there is any i s.t. h makes mistakes on both a_i and b_i then the chance is 0; else the chance (over the random coin flips) is at most $2^{-\epsilon m/2}$.
 - Overall failure prob $\leq H[2m]2^{-\epsilon m/2} \leq \frac{\delta}{2}$.

- Theorem 1': For any class H, distribution D, if $m = |S| \ge \frac{8}{\epsilon^2} \left[\ln(H[2m] + \ln\left(\frac{2}{\delta}\right)] \right]$, then with prob 1- δ , all $h \in H$ have $|err_D(h) err_S(h)| \le \epsilon$.
- Proof: same as for Thm 1 except def of B^* :
 - $B_{S'',S,S'}^*$ = event that $\exists h \in H$ with $|err_{S'}(h) err_{S}(h)| \ge \frac{\epsilon}{2}$.
 - To show: for any |S''| = 2m, $\Pr_{S,S'}\left[B_{S'',S,S'}^*\right] \le \delta/2$.
 - Fix $h \in H[S'']$, pairing $(a_1, b_1), ..., (a_m, b_m)$. Say there are m' indices i s.t. only one of $h(a_i), h(b_i)$ is a mistake.
 - Prob that h is bad over coin-flip experiment is prob that get $|\#heads \#tails| \ge \epsilon m/2$ in $m' \le m$ flips.
 - View as ratio being off from expectation by $\geq \left(\frac{\epsilon m}{4m'}\right)$ and apply Hoeffding.