
1

TTIC 31250
An Introduction to the Theory of

Machine Learning

Learning finite state
environments

Avrim Blum

Consider the following setting

• Say we are a baby trying to figure out
the effects our actions have on our
environment...
– Perform actions

– Get observations

– Try to make an internal model of what is
happening.

A model: learning a finite state
environment

• Let’s model the world as a deterministic finite
automaton (DFA). We perform actions, we get
observations.

• Our actions can also change the state of the
world. # states is finite.

• We have a box with buttons and lights.

• Can press the buttons, observe the lights.
lights = f(current state)

next state = g(button, current state)

• Goal: learn predictive model of device.

Another way to put it

• Compared to an MDP, this is harder in that
multiple states may look identical but easier in
that transitions are deterministic

Relation to MDPs, POMDPs

• Like a POMDP with deterministic transitions.

• Goal is to learn the environment rather than gain
reward.

MDP = Markov Decision Process
POMDP = Partially-observable MDP

Learning a DFA

In the language of standard ML Theory models...

• Asking if we can learn a DFA from
Membership Queries.
– Issue of whether we have counterexamples

(Equivalence Queries) or not.

[for the moment, assume not]

– Also issue of whether or not we have a reset
button.

[for now, assume yes]

1 2

3 4

5 6

2

This seems really hard. Can’t
tell for sure when world state

has changed.ample space S.

Learning DFAs

Let’s look at an easier problem
first: state = observation. space

S.

An example w/o hidden state
2 actions: a, b.

[Switch to partial-screen view]

An example w/o hidden state
2 actions: a, b.

Generic algorithm for lights=state:
•Build a model.
•While not done, find an unexplored
edge and take it.

Now, let’s try the harder problem!

Some examples

Example #1 (3 states)

Example #2 (3 states)

Can we design a procedure to
do this in general?

One problem: what if we always see the
same thing? How do we know there
isn’t something else out there?

Our model:
a,b

Real world:

a a

a

b b ab

a a b bb

Called “combination-lock automaton”

Can we design a procedure to
do this in general?

a a

a

b b ab

a a b bb

Combination-lock automaton: basically
simulating a conjunction.

This means we can’t hope to efficiently
come up with an exact model of the world
from just our own experimentation. (I.e.,
MQs only).

7 8

9 10

11 12

DFA1/state0.html
DFA2/state0.html

3

How to get around this?

• Assume we can propose model and get
counterexample. (MQ+EQ)

• Equivalently, goal is to be predictive. Any
time we make a mistake, we think and
perform experiments. (MQ+MB)

• Goal is not to have to do this too many
times. For our algorithm, total # mistakes
will be at most # states.

Algorithm by Dana Angluin
(with extensions by Rivest & Schapire)

• To simplify things, let’s assume we have a
RESET button. [Back to basic DFA
problem]

• Can get rid of that using something called
a “homing sequence” that you can also
learn.

The problem (recap)

– observation = f(current state)

– next state = g(button, prev state)

• Can feed in sequence of actions, get
observations. Then resets to start.

• Can also propose/field-test model. Get
counterexample.

• We have a DFA:

a

>

a

a

b
b

b

Key Idea
Key idea is to represent the DFA using

a state/experiment table.

a

>

a

a

b
b

b

states

experiments
l a

l

a

b

aa

ab

ba

bb

trans-

itions
Every state has a name and a

profile.

Key Idea
Key idea is to represent the DFA using

a state/experiment table.

states

experiments
l a

l

a

b

aa

ab

ba

bb

trans-

itions

Guarantee will be:

either this is correct,

or else the world has >

n states. In that case,

need way of using

counterexs to add new

state to model.

The algorithm
We’ll do it by example...

(consider counterexample aaba)

13 14

15 16

17 19

4

The algorithm
We’ll do it by example...

(consider counterexample aaba)

Algorithm (formally)

go to 1.

Algorithm guarantees

20 21

22

