TTIC 31250
An Introduction to the Theory of
Machine Learning

Learning finite state
environments

A model: learning a finite state

environment

+ Let's model the world as a deterministic finite
automaton (DFA). We perform actions, we get
observations.

+ Our actions can also change the state of the
world. # states is finite.

Relation to MDPs, POMDPs

MDP = Markov Decision Process
POMDRP = Partially-observable MDP

+ Compared to an MDP, this is harder in that
multiple states may look identical but easier in
that transitions are deterministic

- Like a POMDP with deterministic transitions.

* Goal is o learn the environment rather than gain
reward.

Consider the following setting

+ Say we are a baby trying to figure out
the effects our actions have on our
environment...

- Perform actions

- Get observations

- Try to make an internal model of what is
happening.

Another way to put it
+ We have a box with buttons and lights.

= )
- i
* Can press the buttons, observe the lights.

lights = f(current state)
next state = g(button, current state)

Learning a DFA

In the language of standard ML Theory models...

+ Asking if we can learn a DFA from
Membership Queries.
- Issue of whether we have counterexamples
(Equivalence Queries) or not.

- Also issue of whether or not we have a reset
button.




Learning DFAs

This seems really hard. Can't
tell for sure when world state
‘ has changed.

Let's look at an easier problem
first: state = observation. ’

s
L

An example w/o hidden state

2 actions: a, b.

Generic algorithm for lights=state:
*Build a model.
*While not done, find an unexplored
edge and take it.

Can we design a procedure fo
do this in general?

One problem: what if we always see the
same thing? How do we know there
isn't something else out there?

Our model:

@

Real world@4
so000

Called “"combination-lock automaton”

An example w/o hidden state

2 actions: a, b.

[Switch to partial-screen view]

Some examples

Example #1 (3 states)

Example #2 (3 states)

Can we design a procedure to
do this in general?

co000

Combination-lock automaton: basically
simulating a conjunction.
This means we can't hope to efficiently
come up with an exact model of the world
from just our own experimentation. (I.e.,
MQs only).



DFA1/state0.html
DFA2/state0.html

How to get around this?

+ Assume we can propose model and get
counterexample. (MQ+EQ)

+ Equivalently, goal is to be predictive. Any
time we make a mistake, we think and
perform experiments. (MQ+MB)

* Goal is not to have to do this foo many
times. For our algorithm, total # mistakes
will be at most # states.

The problem (recap)

- We have a DFA:

- observation = f(current state)
- next state = g(button, prev state)

+ Can feed in sequence of actions, get
observations. Then resets to start.

+ Can also propose/field-test model. Get
counterexample.

Key Tdea

Key idea is to represent the DFA using
a state/experiment table.
L‘,\’Z’L’l'!‘lih‘]ll.\‘
A Guarantee will be:
either this is correct,
states or else the world has >
n states. In that case,
aa need way of using
trans- ab counterexs to add new
itions ba state to model.

bb

Algorithm by Dana Angluin

(with extensions by Rivest & Schapire)

+ To simplify things, let's assume we have a
RESET button.

+ Can geft rid of that using something called
a “homing sequence” that you can also
learn.

Key Idea

Key idea is to represent the DFA using
a state/experiment table.
L’,\']M’I'I’IHL’IIL\‘
a

States

trans-

itions

The algorithm

We'll do it by example...

(consider counterexample aaba)




The algorithm

We'll do it by example...

(consider counterexample aaba)

Algorithm guarantees

If k actions, world has n states, then:
At most n equivalence/mistake queries
Final table has size 0(kn?).

So 0(kn?) membership queries to fill in.

Also 0(logs) MQs per mistake where s
is size of counterexample returned.

Algorithm (formally)

Begin with S = {A}, E = {A}.

1. FIill in transitions to make a hypothesis FSM.

While exists s € SA such that no s’ € S has
row(s') = row(s), add s into S, and go to 1

Query for counterexample z.

Consider all splits of z into (p;, 3;), and replace
pi with its predicted equivalent o; € S.

Find a;r; and a; 41741 that produce different
observations.

Add ;41 as a new experiment into E.go to 1.




