
1

TTIC 31250
An Introduction to the Theory of

Machine Learning

Computational Hardness of Learning

Avrim Blum
05/11/20

Computational Hardness of Learning

• We know efficient algorithms for various problems:

– Given a dataset S, find a consistent decision list if one exists.

– Given a dataset S, find a consistent linear threshold function if
one exists.

– Given a dataset S, find a consistent disjunction if one exists.

Computational Hardness of Learning

• But what about the following?

• Can we get algorithms that are guaranteed to solve
these in polynomial-time without assumptions on the
distribution, etc.?

– Given a dataset S, find a consistent AND of 2 linear threshold
functions (intersection of two halfspaces) if one exists.

– Given a dataset S, find a linear threshold function with the
fewest mistakes on S.

– Given a dataset S, find a consistent AND of 2 disjunctions (2-
clause CNF formula) if one exists.

• Answer: don’t expect to because they are NP-hard

Hardness for intersection of 2 halfspaces

• Reduction from NP-hard hypergraph 2-coloring problem.

+++++

- - - -
-
-
-
-

-
-
-
-

-

Given m subsets 𝑆1, … , 𝑆𝑚 of 𝑛 nodes, color each node Red or Blue such
that each 𝑆𝑖 has at least one red node and at least one blue node.

Hardness for intersection of 2 halfspaces

• Reduction from NP-hard hypergraph 2-coloring problem.

+++++

- - - -
-
-
-
-

-
-
-
-

-

Given m subsets 𝑆1, … , 𝑆𝑚 of 𝑛 nodes, color each node Red or Blue such
that each 𝑆𝑖 has at least one red node and at least one blue node.

Hardness for intersection of 2 halfspaces

• Reduction from NP-hard hypergraph 2-coloring problem.

Given m subsets 𝑆1, … , 𝑆𝑚 of 𝑛 nodes, color each node Red or Blue such
that each 𝑆𝑖 has at least one red node and at least one blue node.

Given an instance of hypergraph 2-coloring, we want to create a set 𝑆
of positive and negative examples such that: 𝑆 is consistent with an
intersection of 2 halfspaces iff the given instance was 2-colorable.

•1 •2

•3 •4

•5 •6

2

Hardness for intersection of 2 halfspaces

• Points in ℝ𝑛. Label origin positive, each coord vector ො𝑥𝑗 negative.

Given m subsets 𝑆1, … , 𝑆𝑚 of 𝑛 nodes, color each node Red or Blue such
that each 𝑆𝑖 has at least one red node and at least one blue node.

+

-

-

-

• For each set 𝑆𝑖, label indicator
vector for that set as positive.

Hardness for intersection of 2 halfspaces

• Points in ℝ𝑛. Label origin positive, each coord vector ො𝑥𝑗 negative.

+

-

-

-

• For each set 𝑆𝑖, label indicator
vector for that set as positive. +

+

• Claim: data is consistent with an
intersection of 2 halfspaces iff
given instance was 2-colorable.

Hardness for intersection of 2 halfspaces

• Points in ℝ𝑛. Label origin positive, each coord vector ො𝑥𝑗 negative.

+

-

-

-

• For each set 𝑆𝑖, label indicator
vector for that set as positive.

+

+

+
• Claim: data is consistent with an

intersection of 2 halfspaces iff
given instance was 2-colorable.

Hardness for intersection of 2 halfspaces

• Points in ℝ𝑛. Label origin positive, each coord vector ො𝑥𝑗 negative.

+

-

-

-

• For each set 𝑆𝑖, label indicator
vector for that set as positive.

+
+

• Claim: data is consistent with an
intersection of 2 halfspaces iff
given instance was 2-colorable.

Proof: Given a 2-coloring, just define halfspaces:
𝑤1𝑥1 + …+ 𝑤𝑛𝑥𝑛 ≤ 1/2, where 𝑤𝑗 = 1 if 𝑗 is Red and 𝑤𝑗 = −𝑛 if 𝑗 is Blue

𝑤′1𝑥1 + …+ 𝑤′𝑛𝑥𝑛 ≤ 1/2, where 𝑤′𝑗 = 1 if 𝑗 is Blue and 𝑤′𝑗 = −𝑛 if 𝑗 is Red

Hardness for intersection of 2 halfspaces

• Points in ℝ𝑛. Label origin positive, each coord vector ො𝑥𝑗 negative.

+

-

-

-

• For each set 𝑆𝑖, label indicator
vector for that set as positive.

+
+

• Claim: data is consistent with an
intersection of 2 halfspaces iff
given instance was 2-colorable.

Proof: Given halfspaces, call one “Red” and the other “Blue”. If ො𝑥𝑗 is
separated from orgin by Red halfspace, then color 𝑗 Red; if separated by
Blue halfspace then color 𝑗 Blue; if separated by both, pick arbitrarily.

No 1-color set because convex hulls of {ො𝑥𝑗 ∈ 𝑆𝑖} and {0, Ԧ𝑆𝑖} overlap.

Hardness for learning 2-clause CNF

• A 2-clause CNF formula is an AND of two OR functions, e.g.,

(𝑥1 ∨ 𝑥2 ∨ 𝑥3)(𝑥4 ∨ 𝑥5 ∨ 𝑥6)

• Also NP-hard to find a consistent 2-clause CNF if one exists.

• But, you can learn a 2-clause CNF using a 2-DNF representation:

– Any 2-clause CNF can be multiplied out to a 2-DNF, e.g.,

𝑥1𝑥4 ∨ 𝑥1𝑥5 ∨ 𝑥1𝑥6 ∨ 𝑥2𝑥5 ∨ 𝑥2𝑥6 ∨ 𝑥3𝑥4 ∨⋯

– Learn using “list-and-cross-off” algorithm. But VC-dimension
is now Θ(𝑛2).

Note: DNF is an OR of ANDs. Each AND is called a “term”.

•7 •8

•9 •10

•11 •12

3

How about finding the LTF with lowest
empirical error?

• We know how to find a consistent LTF when one exists. Can also
minimize total hinge loss. But what about minimizing the training
error?

• Turns out this is NP-hard.

• Reduction from the Maximum Independent Set problem in graphs

How about finding the LTF with lowest
empirical error?

• Similar reduction from before.

+

-

-

-

+
+

• Origin is positive, each
coordinate vector ො𝑥𝑖 is negative,
for each edge (𝑖, 𝑗) put a positive
at ො𝑥𝑖 + ො𝑥𝑗.

→

• Notice that maximum independent set corresponds to largest set
of negatives that can be linearly separated from the positives.

• This shows the problem “Find the LTF that correctly classifies all
positives and makes fewest mistakes on negatives” is NP-hard.

• To finish off the argument, just replicate each positive example
𝑛 + 1 times (so min error will only make mistakes on negatives)

Representation-Independent Hardness

• These results show hardness for PAC learning using a particular
hypothesis class H.

• (We gave hardness for consistency problem, but can set uniform
distribution on the output of the reduction and set 𝜖 < 1/𝑛𝑝𝑜𝑖𝑛𝑡𝑠)

• Representation-independent: hardness based on complexity of
target, allowing learner to use any representation it wants.

Representation-Independent Hardness

Examples from last time:

• Parity functions require 2Ω 𝑛 SQs of tolerance 1/poly(n) to learn
in SQ model.

• Decision trees, DNF formulas require 𝑛𝑂(log𝑛) SQs of tolerance
1/poly(n) to learn in SQ model.

These results don’t restrict representation used by learning
algorithm, but they do restrict the way the algorithm can interact
with the data.

What if you don’t want to restrict either one?

• Hardness was even for doing slightly better than random guessing.

Representation-Independent Hardness

In this case, can use cryptographic assumptions.

A function 𝑓: 0,1 𝑛 → 0,1 𝑚 where 𝑚 > 𝑛 is a pseudorandom
generator if for any poly-time algorithm A, any constant c,

Pr
𝑣∼ 0,1 𝑚

𝐴 𝑣 = 1 − Pr
𝑥∼ 0,1 𝑛

(𝐴(𝑓 𝑥 = 1) = 𝑜
1

𝑛𝑐
.

In other words, no poly-time algo A can distinguish pseudorandom
strings of length m (the result of running f on random input of
length n) and truly random strings of length m.

Classic result: can construct generator f such that breaking f
would give a poly-time algorithm for factoring. So, f is a PRG if
factoring is hard. (Also known for some other hard problems too).

Representation-Independent Hardness

Classic use for hardness of learning.

Any algorithm that can even weak-learn arbitrary 𝑂(log𝑛)-depth
AND/OR networks over uniform random examples in polynomial
time would give a poly-time algorithm for factoring.

High-level idea:

• Think of PRG with significant stretch: 0,1 𝑛 → 0,1 𝑝𝑜𝑙𝑦(𝑛).

• Network has PRG input 𝐼 built in, computes 𝑓 𝐼 , and outputs 𝑗th bit,
where 𝑗 is given by low-order lg(𝑛2) bits of example 𝑥.

• If algo can learn, then can distinguish PRG output from true random.

•13 •14

•15 •16

•17 •18

4

Representation-Independent Hardness

Classic use for hardness of learning.

Any algorithm that can even weak-learn arbitrary 𝑂(log𝑛)-depth
AND/OR networks over uniform random examples in polynomial
time would give a poly-time algorithm for factoring.

Can even extend to pseudo-random functions. These are
indistinguishable from truly random even with query access.

Representation-Independent Hardness

More recent results [Daniely 2016]:

Under a stronger assumption (next slide), for any constant 𝑐, there
is no polynomial-time algorithm that given any sample 𝑆 of 𝑛𝑐 points
in −1,+1 𝑛 can whp distinguish the case (a) that labels are just
uniform random coin flips, versus (b) there exists a linear separator
of error at most 10%. (Can replace “10%” with any constant)

So this is pretty sad. Luckily, real-world problems are much nicer
and simple local update algorithms have been very successful.

Representation-Independent Hardness

More recent results [Daniely 2016]:

Assumption is that “refuting random k-XOR formulas” is hard.

This is very similar to the assumption that the thing we wish to
prove is true for parity functions.

Specifically, assumption is that given 𝑚 < 𝑛 𝑘 log 𝑘 examples over
0,1 𝑛 with 𝑘 bits set to 1 in each, it is hard to distinguish the case

that

(a) The examples and labels are random, from

(b) There is a parity function with error ≤ 10%.

Overall

One major challenge of learning theory is to reconcile the power
of deep learning (and the ability to use simple local updates to
learn complex representations in general) with these worst-case
hardness results. Clearly, the problems where deep learning
succeeds are not worst-case, and understanding what makes them
easier is a major research area.

•19 •20

•21 •22

