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Last time we ended with…

Uniform Convergence (VC)
• Theorem 1’: For any class H, distribution D over 𝑋 × {−1,1}, 

if 𝑚 = 𝑆 ≥
8

𝜖2
ln(𝐻 2𝑚 ) + ln

2

𝛿
, then with prob 1-, all 

ℎ ∈ H have  𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ) ≤ 𝜖.

• Proof: same as for Thm 1 except def of 𝐵∗:

– 𝐵
𝑆",𝑆,𝑆′
∗ = event that ∃ℎ ∈ 𝐻 with 𝑒𝑟𝑟𝑆′ ℎ − 𝑒𝑟𝑟𝑆 ℎ ≥

𝜖

2
.

– To show: for any |𝑆"| = 2𝑚, Pr
𝑆,𝑆′

𝐵𝑆",𝑆,𝑆′
∗ ≤ 𝛿/2. 

– Fix ℎ ∈ 𝐻[𝑆"], pairing 𝑎1, 𝑏1 , … , (𝑎𝑚, 𝑏𝑚). Say 𝑚′ indices 
𝑖 s.t. only one of ℎ 𝑎𝑖 , ℎ(𝑏𝑖) is a mistake.   

– Prob that ℎ is bad over coin-flip experiment is prob
that get #ℎ𝑒𝑎𝑑𝑠 − #𝑡𝑎𝑖𝑙𝑠 ≥ 𝜖𝑚/2 in 𝑚′ ≤ 𝑚 flips.

– View as ratio being off from expectation by ≥
𝜖𝑚

4𝑚′ and 

apply Hoeffding.

Motivation and Plan

These bounds are nice but have two drawbacks 
we’d like to address:

1. Computability/estimability: say we have a hypothesis 
class 𝐻 that we don’t understand well.  It might be hard 
to compute or estimate 𝐻[𝑚].

2. Tightness: Our bounds have two sources of loss.  One is 
we did a union bound over labelings of the double-sample 
𝑆", which is overly pessimistic if many are very similar to 
each other.  A second is that we did worst-case over 𝑆", 
whereas we would rather do expected case, or even have 
a bound that depends on our actual training set.  

We will be able to address both, at least in the 
uniform convergence case. 

In particular, we will show:

• Suppose you replaced all true labels of 𝑆 with random labels 
and found the ℎ ∈ 𝐻 of lowest “empirical error” for these.

• Say E[lowest “empirical error”] =
1

2
− 𝛼.

• Clearly, in this experiment, we are overfitting by 𝛼 since 

𝑒𝑟𝑟𝐷 ℎ for a random target function is exactly 
1

2
.

• Claim: 2𝛼 + (low order) is an upper bound on the amount of 
overfitting we get for the true target function.

Bounding overfitting of target by 2x amount of 
overfitting of random noise

Example where need the factor 2

• Suppose the target is all negative.  Hypothesis class 𝐻 is all
Boolean functions over large domain 𝑋.

• For random labels, E[lowest “empirical error”] =
1

2
− 𝛼, for 

𝛼 =
1

2
since can fit anything.

• For true target, can overfit even worse using ℎ = “if 𝑥 ∈ 𝑆
predict negative, else predict positive”.
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Some preliminaries

• Rather than writing 𝑚 as a function of 𝜖, write 𝜖 as function 
of 𝑚.  E.g., would write Theorem 1’ as:

• For any class 𝐻 and distribution 𝐷, whp all h in 𝐻 satisfy

𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟𝑆 ℎ +
8 ln

2𝐻 2𝑚

𝛿

𝑚

(And we bound in the other direction as well, but let's just 
focus on this direction - i.e., how much we overfit the 
sample).

Rademacher averages

• For a given set of data 𝑆 = (𝑥1, 𝑙1), … , (𝑥𝑚, 𝑙𝑚) and class of 
functions 𝐹, the Empirical Rademacher Complexity of F is:

𝑅𝑆 𝐹 = 𝐸𝜎 max
ℎ∈𝐹

1

𝑚


𝑖

𝜎𝑖ℎ(𝑥𝑖)

where 𝜎 = 𝜎1, … , 𝜎𝑚 is a random {−1,+1} labeling.

• I.e., if you pick a random labeling 𝜎 of S, on average how well 
correlated is the most-correlated ℎ ∈ 𝐹?

• Note: ℎ: 𝑋 → {−1,1} so 𝜎𝑖ℎ 𝑥𝑖 = 1 if agree, −1 if disagree.

• Note “correlation” = agreement – disagreement, so error 
45% means correlation of 10%.

Rademacher averages

• For a given set of data 𝑆 = (𝑥1, 𝑙1), … , (𝑥𝑚, 𝑙𝑚) and class of 
functions 𝐹, the Empirical Rademacher Complexity of F is:

𝑅𝑆 𝐹 = 𝐸𝜎 max
ℎ∈𝐹

1

𝑚


𝑖

𝜎𝑖ℎ(𝑥𝑖)

where 𝜎 = 𝜎1, … , 𝜎𝑚 is a random {−1,+1} labeling.

• Distributional RC of F is: 𝑅𝐷 𝐹 = 𝐸𝑆∼𝐷𝑚 𝑅𝑆 𝐹

• Theorem: for any class 𝐻, distrib 𝐷, if 𝑆 ∼ 𝐷𝑚 then with 
prob ≥ 1 − 𝛿, all ℎ ∈ 𝐻 satisfy:

– 𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟𝑆 ℎ + 𝑅𝐷 𝐻 +
ln(2/𝛿)

2𝑚

≤ 𝑒𝑟𝑟𝑆 ℎ + 𝑅𝑆 𝐻 + 3
ln(2/𝛿)

2𝑚
.

Rademacher vs VC

• Rademacher bound can never be much worse than VC bound.

𝑅𝑆 𝐻 = 𝐸𝜎 max
ℎ∈𝐻

1

𝑚


𝑖

𝜎𝑖ℎ(𝑥𝑖)

• How big can 𝑅𝑆 𝐻 be?

• Class 𝐻 produces labelings ℎ1, … , ℎ 𝐻 𝑆 of 𝑆.  For each such 
labeling ℎ𝑖, the probability that its correlation with 𝜎 is 

more than 2𝜖 is at most 𝑒−2𝑚𝜖2 by Hoeffding bounds.

𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟𝑆 ℎ + 𝑅𝑆 𝐻 + 𝑂
ln(1/𝛿)

𝑚

• Setting this to 𝛿/|𝐻 𝑆 |, whp all ℎ ∈ 𝐻 have correlation with 

𝜎 at most 2
ln |𝐻 𝑆 |/𝛿

2𝑚
. So, 𝑅𝑆(𝐻) can’t be much larger.

Rademacher vs VC

• Rademacher bound can never be much worse than VC bound.

𝑅𝑆 𝐻 = 𝐸𝜎 max
ℎ∈𝐻

1

𝑚


𝑖

𝜎𝑖ℎ(𝑥𝑖)

• How big can 𝑅𝑆 𝐻 be?

𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟𝑆 ℎ + 𝑅𝑆 𝐻 + 𝑂
ln(2/𝛿)

𝑚

• Setting this to 𝛿/|𝐻 𝑆 |, whp all ℎ ∈ 𝐻 have correlation with 

𝜎 at most 2
ln |𝐻 𝑆 |/𝛿

2𝑚
. So, 𝑅𝑆(𝐻) can’t be much larger.

Theorem 1’ bound: 𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟𝑆 ℎ +
8 ln

2𝐻 2𝑚

𝛿

𝑚

For this, we need to introduce another 
tail inequality…

On to the proof.
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McDiarmid’s inequality
Say 𝑥1, … , 𝑥𝑚 are independent RVs, and 
𝜙(𝑥1, … , 𝑥𝑚) is some real-valued function.

Assume 𝜙 satisfies the Lipschitz condition 
that changing 𝑥𝑖 can change 𝜙 by at most 𝑐𝑖 .

Then:
Pr
𝑥
[𝜙(𝑥) > E 𝜙 𝑥 + 𝜖] ≤ 𝑒−2𝜖

2/(σ𝑖 𝑐𝑖
2)

• E.g., if 𝑥𝑖 ∈ 0,1 and 𝜙 𝑥 =
𝑥1+⋯+𝑥𝑚

𝑚
, then 𝑐𝑖 =

1

𝑚
, 

and we get 𝑒−2𝜖
2𝑚 (we recover Hoeffding).

Rademacher proof

• Theorem: for any class 𝐻, distrib 𝐷, if 𝑆 ∼ 𝐷𝑚 then with prob ≥ 1 − 𝛿,
all ℎ ∈ 𝐻 satisfy:

– 𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟𝑆 ℎ + 𝑅𝐷 𝐻 +
ln(2/𝛿)

2𝑚
≤ 𝑒𝑟𝑟𝑆 ℎ + 𝑅𝑆 𝐻 + 3

ln(2/𝛿)

2𝑚
.

where 𝑅𝑆 𝐻 = 𝐸𝜎 max
ℎ∈𝐻

1

𝑚
σ𝑖 𝜎𝑖ℎ(𝑥𝑖) , 𝑅𝐷 𝐻 = 𝐸𝑆 𝑅𝑆 𝐻 .

• Step 1: Define 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 = max
ℎ∈𝐻

𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ) .  We want to 

show that with prob ≥ 1 − 𝛿, 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 +
ln(2/𝛿)

2𝑚
.            

Claim 1: with prob ≥ 1 − 𝛿/2, 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 +
ln(2/𝛿)

2𝑚
.

Proof: Think of 𝑀𝐴𝑋𝐺𝐴𝑃(𝑆) as 𝜙 in McDiarmid.  Examples are iid RVs. 

𝑀𝐴𝑋𝐺𝐴𝑃 can change by at most 
1

𝑚
if any (𝑥𝑖, 𝑦𝑖) changes.  Claim 1 follows.

So, suffices to show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷(𝐻).

Rademacher proof

• Theorem: for any class 𝐻, distrib 𝐷, if 𝑆 ∼ 𝐷𝑚 then with prob ≥ 1 − 𝛿,
all ℎ ∈ 𝐻 satisfy:

– 𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟𝑆 ℎ + 𝑅𝐷 𝐻 +
ln(2/𝛿)

2𝑚
≤ 𝑒𝑟𝑟𝑆 ℎ + 𝑅𝑆 𝐻 + 3

ln(2/𝛿)

2𝑚
.

where 𝑅𝑆 𝐻 = 𝐸𝜎 max
ℎ∈𝐻

1

𝑚
σ𝑖 𝜎𝑖ℎ(𝑥𝑖) , 𝑅𝐷 𝐻 = 𝐸𝑆 𝑅𝑆 𝐻 .

• Step 1: Define 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 = max
ℎ∈𝐻

𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ) .  We want to 

show that with prob ≥ 1 − 𝛿, 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 +
ln(2/𝛿)

2𝑚
.            

Claim 1: with prob ≥ 1 − 𝛿/2, 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 +
ln(2/𝛿)

2𝑚
.

So, suffices to show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷(𝐻).

Claim 2: with prob ≥ 1 − 𝛿/2, 𝑅𝑆(𝐻) is within 2
ln(2/𝛿)

2𝑚
of 𝑅𝐷(𝐻). Proof: 

apply McDiarmid to 𝑅𝑆(𝐻).

Rademacher proof

• Step 2: show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 .

• Proof (uses a ghost sample argument): 

• Let’s rewrite 𝑒𝑟𝑟𝐷(ℎ) as 𝐸𝑆′ 𝑒𝑟𝑟𝑆′ ℎ where 𝑆′ is “ghost sample”.

𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 = 𝐸𝑆 max
ℎ∈𝐻

𝐸𝑆′ 𝑒𝑟𝑟𝑆′ ℎ − 𝑒𝑟𝑟𝑆 ℎ

≤ 𝐸𝑆,𝑆′ max
ℎ∈𝐻

𝑒𝑟𝑟𝑆′ ℎ − 𝑒𝑟𝑟𝑆(ℎ)

(you get to pick ℎ after seeing both 𝑆 and 𝑆′)

• Say 𝑆 = (𝑥1, 𝑦1 , … , (𝑥𝑚, 𝑦𝑚)},  𝑆
′ = (𝑥1

′ , 𝑦1
′ , … , (𝑥𝑚

′ , 𝑦𝑚
′ )}. Can rewrite 

as:

𝐸𝑆,𝑆′ max
ℎ∈𝐻

σ𝑖 𝑒𝑟𝑟𝑥𝑖
′ ℎ − 𝑒𝑟𝑟𝑥𝑖 ℎ

𝑚
𝑒𝑟𝑟𝑥𝑖 ℎ = 𝟏ℎ 𝑥𝑖 ≠𝑦𝑖

𝑀𝐴𝑋𝐺𝐴𝑃 𝑆
= max

ℎ∈𝐻
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ)

Rademacher proof

• Step 2: show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 .

• Proof (uses a ghost sample argument): 

• Now, like in the VCdim proof, let’s flip a coin 𝜎𝑖 for each 𝑖 to decide 
whether or not to swap (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖

′, 𝑦𝑖
′) before taking the max.

• Say 𝑆 = (𝑥1, 𝑦1 , … , (𝑥𝑚, 𝑦𝑚)},  𝑆
′ = (𝑥1

′ , 𝑦1
′ , … , (𝑥𝑚

′ , 𝑦𝑚
′ )}. Can rewrite 

as:

𝐸𝑆,𝑆′ max
ℎ∈𝐻

σ𝑖 𝑒𝑟𝑟𝑥𝑖
′ ℎ − 𝑒𝑟𝑟𝑥𝑖 ℎ

𝑚

𝐸𝑆,𝑆′,𝜎 max
ℎ∈𝐻

σ𝑖 𝜎𝑖(𝑒𝑟𝑟𝑥𝑖
′ ℎ − 𝑒𝑟𝑟𝑥𝑖 ℎ )

𝑚

𝑒𝑟𝑟𝑥𝑖 ℎ = 𝟏ℎ 𝑥𝑖 ≠𝑦𝑖

𝑀𝐴𝑋𝐺𝐴𝑃 𝑆
= max

ℎ∈𝐻
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ)

Rademacher proof

• Step 2: show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 .

• Proof (uses a ghost sample argument): 

• Now, like in the VCdim proof, let’s flip a coin 𝜎𝑖 for each 𝑖 to decide 
whether or not to swap (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖

′, 𝑦𝑖
′) before taking the max.

𝐸𝑆,𝑆′,𝜎 max
ℎ∈𝐻

σ𝑖 𝜎𝑖(𝑒𝑟𝑟𝑥𝑖
′ ℎ − 𝑒𝑟𝑟𝑥𝑖 ℎ )

𝑚

≤ 𝐸𝑆′,𝜎 max
ℎ∈𝐻

σ𝑖 𝜎𝑖 𝑒𝑟𝑟𝑥𝑖
′ ℎ

𝑚
− 𝐸𝑆,𝜎 min

ℎ∈𝐻

σ𝑖 𝜎𝑖 𝑒𝑟𝑟𝑥𝑖 ℎ

𝑚

(gap is only larger if we allow the h’s to differ)

𝑀𝐴𝑋𝐺𝐴𝑃 𝑆
= max

ℎ∈𝐻
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ)
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Rademacher proof

• Step 2: show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 .

• Proof (uses a ghost sample argument): 

• Now, like in the VCdim proof, let’s flip a coin 𝜎𝑖 for each 𝑖 to decide 
whether or not to swap (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖

′, 𝑦𝑖
′) before taking the max.

𝐸𝑆,𝑆′,𝜎 max
ℎ∈𝐻

σ𝑖 𝜎𝑖(𝑒𝑟𝑟𝑥𝑖
′ ℎ − 𝑒𝑟𝑟𝑥𝑖 ℎ )

𝑚

≤ 𝐸𝑆′,𝜎 max
ℎ∈𝐻

σ𝑖 𝜎𝑖 𝑒𝑟𝑟𝑥𝑖
′ ℎ

𝑚
− 𝐸𝑆,𝜎 min

ℎ∈𝐻

σ𝑖 𝜎𝑖 𝑒𝑟𝑟𝑥𝑖 ℎ

𝑚

= 2 𝐸𝑆,𝜎 max
ℎ∈𝐻

σ𝑖 𝜎𝑖 𝑒𝑟𝑟𝑥𝑖 ℎ

𝑚

𝑀𝐴𝑋𝐺𝐴𝑃 𝑆
= max

ℎ∈𝐻
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ)

Rademacher proof

• Step 2: show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 .

• Proof (uses a ghost sample argument): 

• Almost done: this looks very close to definition of 𝑅𝐷(𝐻).

= 2 𝐸𝑆,𝜎 max
ℎ∈𝐻

σ𝑖 𝜎𝑖 𝑒𝑟𝑟𝑥𝑖 ℎ

𝑚

• There’s an extra factor of 2.

• We are looking at the correlation of the losses of ℎ with 𝜎, 
rather than the correlation of ℎ with 𝜎. 

• To fix these, suppose we cheated by changing the def of 𝑅𝐷(𝐻) so 
that 𝜎 is a random {−1,1} multiplier applied to the true labels 
rather than a random {−1,1} labeling.   Is that cheating?

𝑀𝐴𝑋𝐺𝐴𝑃 𝑆
= max

ℎ∈𝐻
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ)

𝑅𝐷 𝐻 = 𝐸𝑆,𝜎 max
ℎ∈𝐻

1

𝑚
σ𝑖 𝜎𝑖ℎ(𝑥𝑖)

Rademacher proof

• Step 2: show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 .

= 2 𝐸𝑆,𝜎 max
ℎ∈𝐻

σ𝑖 𝜎𝑖 𝑒𝑟𝑟𝑥𝑖 ℎ

𝑚

• To fix these, suppose we cheated by changing the def of 𝑅𝐷(𝐻) so 
that 𝜎 is a random {−1,1} multiplier applied to the true labels 
rather than a random {−1,1} labeling.   Is that cheating?

𝑅𝐷 𝐻 = 𝐸𝑆𝐸𝜎 max
ℎ∈𝐻

1

𝑚


𝑖

𝜎𝑖𝑦𝑖ℎ(𝑥𝑖) = 𝐸𝑆𝐸𝜎 max
ℎ∈𝐻

1

𝑚


𝑖

𝜎𝑖 1 − 2𝑒𝑟𝑟𝑥𝑖 ℎ

= 𝐸𝑆𝐸𝜎
1

𝑚


𝑖

𝜎𝑖 +max
ℎ∈𝐻

1

𝑚


𝑖

−2𝜎𝑖𝑒𝑟𝑟𝑥𝑖 ℎ

𝑀𝐴𝑋𝐺𝐴𝑃 𝑆
= max

ℎ∈𝐻
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ)

Rademacher proof

• Step 2: show 𝐸𝑆 𝑀𝐴𝑋𝐺𝐴𝑃 𝑆 ≤ 𝑅𝐷 𝐻 .

• Now we’re done.  First term is 0. Second term is 2 times the 
correlation with −𝜎, which is distributed exactly the same as 𝜎. 

𝑅𝐷 𝐻 = 𝐸𝑆𝐸𝜎 max
ℎ∈𝐻

1

𝑚


𝑖

𝜎𝑖𝑦𝑖ℎ(𝑥𝑖) = 𝐸𝑆𝐸𝜎 max
ℎ∈𝐻

1

𝑚


𝑖

𝜎𝑖 1 − 2𝑒𝑟𝑟𝑥𝑖 ℎ

= 𝐸𝑆𝐸𝜎
1

𝑚


𝑖

𝜎𝑖 +max
ℎ∈𝐻

1

𝑚


𝑖

−2𝜎𝑖𝑒𝑟𝑟𝑥𝑖 ℎ

• Proved by {Bartlett, Boucheron, Lugosi, Mendelson} 2000-2002.

𝑀𝐴𝑋𝐺𝐴𝑃 𝑆
= max

ℎ∈𝐻
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆(ℎ)

-Done-

Possible project: understand/explain extensions to online case 
“sequential Rademacher complexity”
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