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Today: back to distributional setting
• We are given sample S = {(𝑥𝑖 , 𝑦𝑖)}.

– Assume x’s come from some fixed probability 
distribution D over instance space.

– View labels 𝑦 as being produced by some 
target function. [Or can think of distrib over pairs 
(𝑥𝑖 , 𝑦𝑖).]

• Alg does optimization over S to produce 
some hypothesis h.  Want h to do well on 
new examples also from D.

• How big does S have to be to get this kind 
of guarantee?

Basic sample complexity bound recap

• Argument: fix bad h.  Prob of consistency at 
most (1-)|S|.  Set to /|H| and use union bound.

• So, if the target concept is in H, and we have an 
algorithm that can find consistent functions, 
then we only need this many examples to 
achieve the PAC guarantee.

• If 𝑆 ≥
1

𝜖
ln 𝐻 + ln

1

𝛿
, then with probability ≥

1 −, all ℎ ∈ 𝐻 with errD(h)≥  have errS(h) > 0.

Today: two issues

1. Look at more general notions of “uniform 
convergence”.

2. Replace ln(|H|) with better measures of 
complexity.

• If 𝑆 ≥
1

𝜖
ln 𝐻 + ln

1

𝛿
, then with probability ≥

1 −, all ℎ ∈ 𝐻 with errD(h)≥  have errS(h) > 0.

Uniform Convergence
• Our basic result only bounds the chance that a bad 

hypothesis looks perfect on the data. What if 
there is no perfect h∈H?

• Without making any assumptions about the target 
function, can we say that whp all h∈H satisfy 
|errD(h) – errS(h)| ≤ ?

– Called “uniform convergence”.

– Motivates optimizing over S, even if we can’t find 
a perfect function.

• To prove bounds like this, need some good tail 
inequalities.

Tail inequalities
Tail inequality: bound probability mass in tail of distribution.

• Consider a hypothesis h with true error p.

• If we see m examples, then the expected fraction of 
mistakes is p, and the standard deviation  is (p(1-p)/m)1/2.

• A convenient rule for iid Bernoulli trials, in our notation, is: 
Pr[|errD(h) – errS(h)| > 1.96] < 0.05.

– If we want 95% confidence that true and observed 
errors differ by only , only need (1.96)2p(1-p)/2 < 1/2

examples.  [worst case is when p=1/2]

• Chernoff and Hoeffding bounds extend to case where we 
want to show something is really unlikely, so can rule out 
lots of hypotheses. 
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Chernoff and Hoeffding bounds
Consider m flips of a coin of bias p.  Let 𝑁ℎ𝑒𝑎𝑑𝑠

be the observed # heads. Let ,a ∈ [0,1].
Hoeffding bounds:
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠/m > p + ] ≤ e-2m2

, and
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m < p - ] ≤ e-2m2

.
Chernoff bounds:
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m > p(1+a)] ≤ e-mpa2/3, and
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m < p(1-a)] ≤ e-mpa2/2.
E.g,
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 > 2(expectation)] ≤ e-(expectation)/3.
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 < (expectation)/2] ≤ e-(expectation)/8.

Typical use of bounds

• Proof: Just apply Hoeffding + union bound.

– Chance of failure at most 2|H|e-2|S|2.

– Set to . Solve.

Thm: If 𝑆 ≥
1

2𝜖2
ln 2 𝐻 + ln

1

𝛿
, then with prob 

≥ 1 − 𝛿, all ℎ ∈ 𝐻 have |errD(h)- errS(h)| < .

Hoeffding bounds:
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠/m > p + ] ≤ e-2m2

• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m < p - ] ≤ e-2m2

Typical use of bounds

• Proof: Just apply Hoeffding + union bound.

– Chance of failure at most 2|H|e-2|S|2.

– Set to . Solve.

• So, whp, best on sample is -best over D.
– Note: this is worse than previous bound (1/ has become 

1/2), because we are asking for something stronger.

– Can also get bounds “between” these two.

Thm: If 𝑆 ≥
1

2𝜖2
ln 2 𝐻 + ln

1

𝛿
, then with prob 

≥ 1 − 𝛿, all ℎ ∈ 𝐻 have |errD(h)- errS(h)| < .

Typical use of bounds

Proof: apply Chernoff…

Thm: If 𝑆 ≥
6

𝜖
ln 𝐻 + ln

1

𝛿
, then with prob ≥ 1-, 

all ℎ ∈ 𝐻 with errD(h) > 2 have errS(h) > , and 
all ℎ ∈ 𝐻 with errD(h) < /2 have errS(h) < .

Chernoff bounds:
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m > p(1+a)] ≤ e-mpa2/3

• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m < p(1-a)] ≤ e-mpa2/2

E.g,

• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 > 2(expectation)] ≤ e-(expectation)/3.
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 < (expectation)/2] ≤ e-(expectation)/8.

Next topic: improving the |H|

• For convenience, let’s go back to the 
question: how big does S have to be so 
that whp, errS(h) = 0  ⇒ errD(h) ≤ .

VC-dimension and effective size of H

• If many hypotheses in H are very 
similar, we shouldn’t have to pay so much

• E.g., consider the class H ={[0,a]: 0 ≤ a ≤ 1}.
– Define a so Pr([a,a])=, and a’ so Pr([a,a’])=.

– Enough to get at least one example in each 
interval.  Just need (1-)|S| ≤ /2.

– (1/)ln(2/) examples.

• How can we generalize this notion?

a a’a
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Effective number of hypotheses
Define: H[S] = set of all different ways to label 

points in S using concepts in H. 

Define H[m] = maximum |H[S]| over datasets S 
of m points.

What is H[m] for “initial intervals”?

Effective number of hypotheses
Define: H[S] = set of all different ways to label 

points in S using concepts in H. 

Define H[m] = maximum |H[S]| over datasets S 
of m points.

What is H[m] for linear separators in R2?

Effective number of hypotheses
Define: H[S] = set of all different ways to label 

points in S using concepts in H. 

Define H[m] = maximum |H[S]| over datasets S 
of m points.

Thm: For any class H, distribution D, if

𝑆 = 𝑚 >
2

𝜖
log2 2𝐻[2𝑚] + log2

1

𝛿
,

then with prob. 1-, all ℎ ∈ 𝐻 with error >  are 
inconsistent with data. [Will prove next class]

I.e., can roughly replace “|H|” with “H[2m]”.

Effective number of hypotheses

– H[m] is sometimes hard to calculate exactly, but 
can get a good bound using “VC-dimension”.  

– VC-dimension is roughly the point at which H 
stops looking like it contains all functions.

Define: H[S] = set of all different ways to label 
points in S using concepts in H. 

Define H[m] = maximum |H[S]| over datasets S 
of m points.

Shattering
• Defn: A set of points S is shattered by H if there 

are concepts in H that label S in all of the 2|S|

possible ways.
– In other words, all possible ways of classifying points in 

S are achievable using concepts in H.

• E.g., any 3 non-collinear points in ℝ2 can be 
shattered by linear threshold functions, but no set 
of 4 points can be.

VC-dimension
• The VC-dimension of a hypothesis class H is 

the size of the largest set of points that 
can be shattered by H.

• So, if the VC-dimension is d, that means there 
exists a set of d points that can be shattered, but 
no set of d+1 points can be shattered.

• E.g., VC-dim(linear threshold fns in 2-D) = 3.
– Will later show VC-dim(LTFs in Rn) = n+1.

– What is the VC-dim of intervals on the real line?

– How about C = {all 0/1 functions on {0,1}n}?

13 14

15 16

17 18



4

Upper and lower bound theorems
• Theorem 1: For any class 𝐻, distribution 𝐷, if 𝑚 =

𝑆 >
2

𝜖
log2 2𝐻[2𝑚] + log2

1

𝛿
, then with prob. 1-, 

all ℎ ∈ 𝐻 with error >  are inconsistent with data. 

• Theorem 2 (Sauer’s lemma):

𝐻 𝑚 ≤ 

𝑖=0

𝑉𝐶𝑑𝑖𝑚 𝐻
𝑚
𝑖

= 𝑂 𝑚𝑉𝐶𝑑𝑖𝑚 𝐻 .

• Corollary 3: can replace bound in Thm 1 with

𝑂
1

𝜖
𝑉𝐶𝑑𝑖𝑚 𝐻 log

1

𝜖
+ log

1

𝛿

• Theorem 4: For any alg A, class H, exists distrib D 

and target in H such that if 𝑆 <
𝑉𝐶𝑑𝑖𝑚 𝐻 −1

8𝜖
then 

E[errD(A)]≥ .

Upper and lower bound theorems
• Theorem 4: For any alg A, class H, exists distrib D, 

𝑓 ∈ 𝐻 s.t. if 𝑆 <
𝑉𝐶𝑑𝑖𝑚 𝐻 −1

8𝜖
then E[errD(A)]≥ . 

• Proof:
– Consider 𝑑 = VC-dim(H) shattered points.  Define distrib

D with prob 1 − 4𝜖 on one point and prob
4𝜖

𝑑−1
on the rest.

– Pick a random labeling of the 𝑑 points as the target. 

– 𝐸 𝑒𝑟𝑟𝐷 𝐴 = Pr[𝑚𝑖𝑠𝑡𝑎𝑘𝑒 𝑜𝑛 𝑡𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡] ≥
1

2
Pr 𝑡𝑒𝑠𝑡 𝑝𝑜𝑖𝑛𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑆 ≥

1

2
4𝜖 1 −

4𝜖

𝑑−1

𝑆
≥ 2𝜖 1 −

𝑆 4𝜖

𝑑−1
= 2𝜖 1 −

1

2
= 𝜖.

Upper and lower bound theorems

• Theorem 2 (Sauer’s lemma): 𝐻 𝑚 ≤
𝑚
≤ 𝑑

= ways of 

choosing d=VCdim(H) or fewer items out of m.

• Proof:

– First, note that 
𝑚
≤ 𝑑

=
𝑚− 1
≤ 𝑑

+
𝑚 − 1
≤ 𝑑 − 1

.  See why?

Upper and lower bound theorems

• Theorem 2 (Sauer’s lemma): 𝐻 𝑚 ≤
𝑚
≤ 𝑑

= ways of 

choosing d=VCdim(H) or fewer items out of m.

• Proof:

– First, note that 
𝑚
≤ 𝑑

=
𝑚− 1
≤ 𝑑

+
𝑚 − 1
≤ 𝑑 − 1

.  See why?

– Say we have a set 𝑆 of 𝑚 examples. Look at 𝐻[𝑆].

– Pick an 𝑥 ∈ 𝑆.  Call ℎ, ℎ′ ∈ 𝐻[𝑆] “twins” if differ only on 𝑥.

– We know 𝐻 𝑆 ∖ 𝑥 has ≤
𝑚− 1
≤ 𝑑

labelings by induction.

– How much larger is 𝐻[𝑆] compared to 𝐻 𝑆 ∖ 𝑥 ?  Just 
the number of twins.  Let 𝐻′ = {ℎ ∈ 𝐻[𝑆] that labels 𝑥
negative but has a twin that labels 𝑥 positive}.

– VCdim 𝐻′ ≤ 𝑑 − 1.  (Since VCdim 𝐻 ≥ VCdim 𝐻′ + 1.)

– Proof follows.
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