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Today: back to distributional setting

+ We are given sample S = {(x;, y;)}.
- Assume x's come from some fixed probability
distribution D over instance space.
- View labels y as being produced by some
target function. [Or can think of distrib over pairs
(i, 51).]
- Alg does optimization over S to produce
some hypothesis h. Want h to do well on
new examples also from D.

How big does S have to be to get this kind
of guarantee?

Basic sample complexity bound recap

* If IS| = 2 [InlH + In3], then with probability =
1 -3, all h € H with erry(h)= ¢ have errg(h) > O.

+ Argument: fix bad h. Prob of consistency at
most (1-¢)!SI. Set to 8/|H| and use union bound.

* So, if the target concept is in H, and we have an
algorithm that can find consistent functions,
then we only need this many examples to
achieve the PAC guarantee.

Today: two issues

- If |S| = i[lnIHI + ln%], then with probability >
1 -3, all h € H with erry(h)= ¢ have errs(h) > O.

1. Look at more general notions of “uniform

convergence”.

2. Replace In(|H|) with better measures of

complexity.

Uniform Convergence

+ Our basic result only bounds the chance that a bad
hypothesis looks perfect on the data. What if
there is no perfect heH?

+ Without making any assumptions about the target
function, can we say that whp all heH satisfy
lerry(h) - errg(h)| <e?

- Called "uniform convergence”.

- Motivates optimizing over S, even if we can't find
a perfect function.

* To prove bounds like this, need some good tail
inequalities.

Tail inequalities

Tail inequality: bound probability mass in tail of distribution.

- Consider a hypothesis h with frue error p.

+ If we see m examples, then the expected fraction of
mistakes is p, and the standard deviation  is (p(1-p)/m)2,

+ A convenient rule for iid Bernoulli trials, in our notation, is:
Pr[lerry(h) - errg(h)| > 1.965] < 0.05.

- If we want 95% confidence that true and observed
errors differ by only ¢, only need (1.96)?p(1-p)/c? < 1/¢?
examples. [worst case is when p=1/2]

+ Chernoff and Hoeffding bounds extend to case where we

want to show something is really unlikely, so can rule out
lots of hypotheses.




Chernoff and Hoeffding bounds

Consider m flips of a coin of bias p. Let Ny.uus
be the observed # heads. Let ¢,a € [0,1].

Hoeffding bounds:

* Pr[Npeaas/m>p + €] < e-2m? and

* PP[Nheags /m < p - €] < e2me?,

Chernoff bounds:

* Pr[Npeqas /m > p(1+ot)] < e‘mPa2/3l and

* Pr[Nheqqs /m < p(1-a)] < e'"‘Paz/Z_

E.g,

* Pr[Npeqas > 2(expectation)] < e-(expectation)/s,
* Pr[Npeqas < (expectation)/2] < e-(expectation)/s,

Typical use of bounds

Thm: If S| = = [In(2|H1) + In(3)], then with prob
>1-4,all h € H have |erry(h)- errg(h)]| < .

Proof: Just apply Hoeffding + union bound.
- Chance of failure at most 2|H|e2Isl<?,
- Set to 5. Solve.

Hoeffding bounds:
: Pr[Nheads/m > p + 8] < e-stz
° Pr[Nhéads /m < p- g] < e-?ﬂ’\sz

7

Typical use of bounds

Thm: If |S| > ﬁ [ln(ZIHI) +In (%)] then with prob
>1-4,dll h € H have |erry(h)- errg(h)| < e.

Proof: Just apply Hoeffding + union bound.
- Chance of failure at most 2|H|e2IsI,
- Set to 5. Solve.

So, whp, best on sample is ¢-best over D.

- Note: this is worse than previous bound (1/¢ has become
1/€2), because we are asking for something stronger.

- Can also get bounds "between” these two.

Typical use of bounds

Thm: If |S| = % [In|H + In3|, then with prob > 1-3,

all h € H with erry(h) > 2¢ have errg(h) > ¢, and
all h € H with erry(h) < €/2 have errg(h) < e.

Proof: apply Chernoff..

Chernoff bounds:
Pr[Nheqas /m > P(1+0L)] < e—l’npuz/li
Pr[Nheads /m < p(l—(x)] < e-l’npuz/z
Eg.
Pr[Nheqas > 2(expectation)] < e(expectation)/3,
Pr[Npeqqs < (expectation)/2] < e-(expectation)/8,
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Next topic: improving the |H|

For convenience, let's go back to the
question: how big does S have to be so
that whp, errg(h) =0 = erry(h) <e.

VC-dimension and effective size of H

 If many hypotheses in H are very
similar, we shouldn't have to pay so much
E.g., consider the class H ={[0,a]: 0 < a < 1}.
- Define a, so Pr([a,,a])=¢, and a,’ so Pr([a,a,'])=¢.

a, a a,/
- Enough to get at least one example in each
interval. Just need (1-¢)!s! < §/2.

- (1/€)In(2/38) examples.
How can we generalize this notion?
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Effective number of hypotheses

Define: H[S] = set of all different ways to label
points in S using concepts in H.

Define H[m] = maximum |H[S]| over datasets S
of m points.

What is H[m] for “initial intervals"?

Effective number of hypotheses

Define: H[S] = set of all different ways to label

Define H[m] = maximum |H[S]| over datasets S

points in S using concepts in H.

of m points.

What is H[m] for linear separators in R%?
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Effective number of hypotheses

Define: H[S] = set of all different ways to label
points in S using concepts in H.

Define H[m] = maximum |H[S]| over datasets S
of m points.

Thm: For any class H, distribution D, if

|S|=m >§ log,(2H[2m]) + log, (%)},
then with prob. 1-3, all h € H with error > ¢ are
inconsistent with data. [Will prove next class]

I.e., can roughly replace “|H|" with “"H[2m]".

Effective number of hypotheses

Define: H[S] = set of all different ways to label

Define H[m] = maximum |H[S]| over datasets S

points in S using concepts in H.

of m points.
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Shattering

are concepts in H that label S in all of the 2!S!
possible ways.

S are achievable using concepts in H.
E.g., any 3 non-collinear points in R? can be

of 4 points can be.

Defn: A set of points S is shattered by H if there

- Inother words, all possible ways of classifying points in

shattered by linear threshold functions, but no set
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- H[m] is sometimes hard to calculate exactly, but

can get a good bound using "VC-dimension”.

- VC-dimension is roughly the point at which H

stops looking like it contains all functions.

16

VC-dimension

The VC-dimension of a hypothesis class H is
the size of the largest set of points that
can be shattered by H.

So, if the VC-dimension is d, that means there
exists a set of d points that can be shattered, but
no set of d+1 points can be shattered.

E.g., VC-dim(linear threshold fns in 2-D) = 3.

- Will later show VC-dim(LTFs in R") = n+1.

- What is the VC-dim of intervals on the real line?

- How about C = {all 0/1 functions on {0,1}"}?
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Upper and lower bound theorems
Theorem 1: For any class H, distribution D, if m =
15| > 2[log, (2H[2m]) + log, |, then with prob. 1-3,
all h € H with error > ¢ are inconsistent with data.
Theorem 2 (Sauer's lemma):

vedim(H)

Hlm] < z (T) = o(mYedimen)

i=0

Corollary 3: can replace bound in Thm 1 with

0 (g [VCdim(H) log (%) +log @])

Theorem 4: For any alg A, class H, exists distrib D
and target in H such that if |S| < w then

Upper and lower bound theorems
Theorem 4: For any alg A, class H, exists distrib D,
feEHstif 5] < w then E[errp(A)] > «.
Proof:

- Consider d = VC-dim(H) shattered points. Define distrib
D with prob 1 — 4¢ on one point and prob ﬁ on the rest.
- Pick a random labeling of the d points as the target.

- Elerrp(A)] = Pr[mistake on test point] = = 2 Pr[test point not in S| >

00159 ca(1-2 = ea(1-2) =

Elerrpy(A)] = «.
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Upper and lower bound theorems

Theorem 2 (Sauer's lemma): H[m] < (<md) = ways of
choosing d=VCdim(H) or fewer items out of m.

Proof:
- First, note that (< d) (mg_d1> + (<md

) See why?
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Upper and lower bound theorems

Theorem 2 (Sauer's lemma): H[m] < (<md) = ways of
choosing d=VCdim(H) or fewer items out of m.
Proof:

- First, note that (< d) ( <_d1) + (< de ) See why?
- Say we have a set S of m examples. Look at H[S].
- Pickanx €S. Call h,h' € H[S] "twins" if differ only on x.

- We know H[S \ {x}] has < ( ) labelings by induction.

- How much larger is H[S] compared to H[S\ {x}]? Just
the number of twins. Let H' = {h € H[S] that labels x
negative but has a twin that labels x positive}.

- VCdim(H'") <d - 1. (Since VCdim(H) = VCdim(H') + 1.)

- Proof follows.
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