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Lecture 4: Support Vector Machines

Perceptron Recap
Perceptron alg makes at most 𝑤∗ 2𝑅2 mistakes if ∃𝑤∗ with 
𝑤∗ ⋅ 𝑥 ≥ 1 on all positives and 𝑤∗ ⋅ 𝑥 ≤ −1 on all negatives, and 
all 𝑥 ≤ 𝑅.

Algorithm:   

▪ Initialize 𝑤 = 0.  Predict positive 
if 𝑤 ⋅ 𝑥 > 0, else predict negative. 

▪ Mistake on positive: 𝑤 ← 𝑤 + 𝑥.

▪ Mistake on negative: 𝑤 ← 𝑤 − 𝑥.
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Perceptron algorithm

Example:

-

(0.01,1) –
(1,1) +
(1,0) + +

+

Algorithm:

Initialize 𝑤 = 0.  Use w ¢ x > 0.

• Mistake on pos: w Ã w+x.

• Mistake on neg: w Ã w-x.

(1,1)
(.99,0)
(.98,-1)
(1.98,0)

(1.97,-1)

Analysis

Proof: consider w ¢ w* and ||w||

• Each mistake increases w ¢ w* by at least 1.

(w + x) ¢ w* = w ¢ w* + x ¢ w* ¸ w ¢ w* + 1.

So after M mistakes, 𝑤 ⋅ 𝑤∗ ≥ 𝑀.

• Each mistake increases w¢w by at most 𝑅2.

(w + x) ¢ (w + x) = w¢w + 2(w¢x) + x¢x · w¢w + 𝑅2.

So, after M mistakes, 𝑤 2 ≤ 𝑀𝑅2, so 𝑤 ≤ 𝑀𝑅.

Perceptron alg makes at most 𝑤∗ 2𝑅2 mistakes if ∃𝑤∗ with 
𝑤∗ ⋅ 𝑥 ≥ 1 on all positives and 𝑤∗ ⋅ 𝑥 ≤ −1 on all negatives, and 
all 𝑥 ≤ 𝑅.

Since 
𝑤⋅𝑤∗

𝑤∗ ≤ ‖𝑤‖, get 
𝑀

𝑤∗ ≤ 𝑀𝑅 so 𝑀 ≤ 𝑤∗ 𝑅.

What if w* isn’t perfect?
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Theorem: on any sequence of examples 𝑆, the Perceptron 
algo makes at most min

𝑤∗
𝑤∗ 2𝑅2 + 2𝐿ℎ𝑖𝑛𝑔𝑒(𝑤

∗, 𝑆) mistakes.

𝑤∗ ⋅ 𝑥1

The hinge-loss of w* on x is the 
amount by which the desired 
inequality (𝑤∗ ⋅ 𝑥 ≥ 1 or 𝑤∗ ⋅ 𝑥 ≤ −1) 
is not satisfied.

Support Vector Machines (SVMs)
In the batch (PAC) setting, we are given 𝑆 up front.  Let’s 
just solve for 𝑤∗ of largest margin.  (“realizable case”)

Convex optimization problem:

Minimize: 𝑤 2

Subject to: 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 ≥ 1 for all 𝑥𝑖, 𝑦𝑖 ∈ 𝑆. 

But what if there’s no perfect 
separator?
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(viewing 𝑦𝑖 as ±1) 
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Support Vector Machines (SVMs)
Let’s solve for the solution that minimizes a (generalization 
of) the Perceptron mistake bound. 

Given a quantity 𝐶 as input:

Minimize: 𝑤 2 + 𝐶 σ𝑥𝑖∈𝑆
𝜉𝑖

Subject to: 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖 for all 𝑥𝑖, 𝑦𝑖 ∈ 𝑆. 

𝜉𝑖 ≥ 0 for all 𝑖. +
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hinge loss. The 𝜉𝑖 are “slack 
variables”

This is the SVM algorithm.  The 
quantity 𝐶 trades off margin and 
hinge-loss.

Support Vector Machines (SVMs)
Given a quantity 𝐶 as input:

Minimize: 𝑤 2 + 𝐶 σ𝑥𝑖∈𝑆
𝜉𝑖

Subject to: 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖 for all 𝑥𝑖, 𝑦𝑖 ∈ 𝑆. 

𝜉𝑖 ≥ 0 for all 𝑖. +
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hinge loss. The 𝜉𝑖 are “slack 
variables”

Some intuition:

▪ The total hinge loss is an upper bound 
on empirical 0/1-loss (# mistakes on 𝑆) 
of the classifier 𝑤 ⋅ 𝑥 > 0.

𝑤 ⋅ 𝑥1

Support Vector Machines (SVMs)
Given a quantity 𝐶 as input:
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hinge loss. The 𝜉𝑖 are “slack 
variables”

Some intuition:

▪ The total hinge loss is an upper bound 
on empirical 0/1-loss (# mistakes on 𝑆) 
of the classifier 𝑤 ⋅ 𝑥 > 0.

▪ The first term × 𝑅2 is roughly (take on 
faith for now) an upper bound on the 
amount of overfitting. 

▪ Together, proportional to rough upper-bound on true error.

Support Vector Machines (SVMs)
Given a quantity 𝐶 as input:

Minimize: 𝑤 2 + 𝐶 σ𝑥𝑖∈𝑆
𝜉𝑖

Subject to: 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖 for all 𝑥𝑖, 𝑦𝑖 ∈ 𝑆. 
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hinge loss. The 𝜉𝑖 are “slack 
variables”

This is the primal form of SVM.

To kernelize it, we will want to 
move to the dual form.

So, first a bit about the Lagrangian dual…

Lagrangian Dual

Consider an optimization problem of the form: 

Minimize: convex function in some variables (like 𝑤𝑖, 𝜉𝑖) 

Subject to: linear constraints on these variables.

Think of as a game between a 
corporation that wants to minimize 
its costs (given by the convex function) 

and a government, that doesn’t want 
the corporation to break any laws 
(given by the linear constraints).

Lagrangian Dual

Consider an optimization problem of the form: 

Minimize: convex function in some variables (like 𝑤𝑖, 𝜉𝑖) 

Subject to: linear constraints on these variables.

For each constraint, the govt can 
charge a fine that is linear in the 
amount by which it is violated.

E.g., if govt puts fine of $100 on 𝜉𝑖 ≥ 0 and 
corp uses 𝜉𝑖 = −0.5 then corp pays $50.

But there’s a catch: must be fully linear. If 
corp uses 𝜉𝑖 = +0.5 then corp collects $50.
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Lagrangian Dual

Consider an optimization problem of the form: 

Minimize: convex function in some variables (like 𝑤𝑖, 𝜉𝑖) 

Subject to: linear constraints on these variables.

The game: for each constraint 𝑗, govt gets 
to choose 𝛼𝑗 ≥ 0 linear penalty.  Corp 
chooses setting of variables.  Corp wants 
to minimize cost.  Govt wants to maximize 
(or equivalently to keep corp honest).

If corp has to go first, clearly should pick optimal 
feasible point (else govt will assign infinite penalty 
to any violated constraint).

Claim: If govt goes first, can assign penalties such that corp can do 
no better. (No “duality gap”.)  This relies on convexity of the cost 
function. Govt’s optimization problem is called the dual.

Lagrangian Dual

Let 𝑤 denote strategy of corp (primal variables) and let Ԧ𝛼
denote strategy of govt (dual variables).  The Lagrangian is 
the total cost 𝐿(𝑤, Ԧ𝛼) paid by corp.

Govt’s optimization problem is:
max
𝛼

min
𝑤

𝐿(𝑤, Ԧ𝛼) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛼𝑗 ≥ 0 ∀𝑗

Let’s see how this plays out for SVMs.

SVM Dual Formulation

Primal: Minimize:  
1

2
𝑤 2 + 𝐶 σ𝑖 𝜉𝑖

Subject to: 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖 for all 𝑥𝑖, 𝑦𝑖 ∈ 𝑆. 

𝜉𝑖 ≥ 0 for all 𝑖. 

Lagrangian: have variables 𝛼𝑖1 ≥ 0 for each constraint 
of 1st kind and 𝛼𝑖2 ≥ 0 for each constraint of 2nd kind.

Govt’s optimization problem is:

1

2
𝑤 2 + 𝐶 σ𝑖 𝜉𝑖 + σ𝑖𝛼𝑖1 1 − 𝜉𝑖 − 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 − σ𝑖𝛼𝑖2𝜉𝑖max

𝛼1,𝛼2
min
𝑤,𝜉

subject to 𝛼𝑖1, 𝛼𝑖2 ≥ 0 for all 𝑖. 

SVM Dual Formulation

Now, let’s think about a specific 𝜉𝑖. Contribution is 
𝜉𝑖(𝐶 − 𝛼𝑖1 − 𝛼𝑖2).  Govt had better set 𝛼𝑖1 + 𝛼𝑖2 = 𝐶, else 
corp can make this −∞.  So, replace 𝛼𝑖2 with 𝐶 − 𝛼𝑖1, let 
𝛼𝑖 = 𝛼𝑖1, and have constraint 0 ≤ 𝛼𝑖 ≤ 𝐶. Simplifies to…

Govt’s optimization problem is:

1

2
𝑤 2 + 𝐶 σ𝑖 𝜉𝑖 + σ𝑖𝛼𝑖1 1 − 𝜉𝑖 − 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 − σ𝑖𝛼𝑖2𝜉𝑖max

𝛼1,𝛼2
min
𝑤,𝜉

subject to 𝛼𝑖1, 𝛼𝑖2 ≥ 0 for all 𝑖. 

Govt wants to solve for 𝛼𝑖 s.t. 0 ≤ 𝛼𝑖 ≤ 𝐶 to maximize

min
𝑤

1

2
𝑤 2 + σ𝑖𝛼𝑖(1 − 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 )

SVM Dual Formulation

Now, let’s think about a specific 𝜉𝑖. Contribution is 
𝜉𝑖(𝐶 − 𝛼𝑖1 − 𝛼𝑖2).  Govt had better set 𝛼𝑖1 + 𝛼𝑖2 = 𝐶, else 
corp can make this −∞.  So, replace 𝛼𝑖2 with 𝐶 − 𝛼𝑖1, let 
𝛼𝑖 = 𝛼𝑖1, and have constraint 0 ≤ 𝛼𝑖 ≤ 𝐶. Simplifies to…

Govt wants to solve for 𝛼𝑖 s.t. 0 ≤ 𝛼𝑖 ≤ 𝐶 to maximize

min
𝑤

1

2
𝑤 2 +σ𝑖𝛼𝑖(1 − 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 )

We can solve inner minimization by setting gradient to 0: 

𝑤 − σ𝑖𝛼𝑖𝑦𝑖𝑥𝑖 = 0.

Plug in 𝑤 = σ𝑖𝛼𝑖𝑦𝑖𝑥𝑖 above.

SVM Dual Formulation

Govt wants to solve for 𝛼𝑖 s.t. 0 ≤ 𝛼𝑖 ≤ 𝐶 to maximize

min
𝑤

1

2
𝑤 2 +σ𝑖𝛼𝑖(1 − 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 )

We can solve inner minimization by setting gradient to 0: 

𝑤 − σ𝑖𝛼𝑖𝑦𝑖𝑥𝑖 = 0.

Plug in 𝑤 = σ𝑖𝛼𝑖𝑦𝑖𝑥𝑖 above.

Dual: solve for 𝛼𝑖 s.t. 0 ≤ 𝛼𝑖 ≤ 𝐶 to maximize 
1

2
σ𝑖σ𝑗𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 𝑥𝑖 ⋅ 𝑥𝑗 +σ𝑖𝛼𝑖 −σ𝑖𝛼𝑖𝑦𝑖 σ𝑗𝛼𝑗𝑦𝑗(𝑥𝑗 ⋅ 𝑥𝑖) .

= σ𝑖𝛼𝑖 −
1

2
σ𝑖σ𝑗𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ⋅ 𝑥𝑗).
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SVM Dual Formulation
Dual: solve for 𝛼𝑖 s.t. 0 ≤ 𝛼𝑖 ≤ 𝐶 to maximize 

1

2
σ𝑖σ𝑗𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 𝑥𝑖 ⋅ 𝑥𝑗 +σ𝑖𝛼𝑖 −σ𝑖𝛼𝑖𝑦𝑖 σ𝑗𝛼𝑗𝑦𝑗(𝑥𝑗 ⋅ 𝑥𝑖) .

= σ𝑖𝛼𝑖 −
1

2
σ𝑖σ𝑗𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ⋅ 𝑥𝑗).

Notice this is kernelizable.  Hence, we can run SVMs with 
any kernel using the dual and replacing 𝑥𝑖 ⋅ 𝑥𝑗 with 𝐾(𝑥𝑖 , 𝑥𝑗).  

Intro to Tail Inequalities

Chernoff and Hoeffding bounds
Consider m flips of a coin of bias p.  Let 𝑁ℎ𝑒𝑎𝑑𝑠 be 

the observed # heads. Let ,a ∈ [0,1].
Hoeffding bounds:
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠/m > p + ] ≤ e-2m2

• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m < p - ] ≤ e-2m2

Chernoff bounds:

• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m > p(1+a)] ≤ e-mpa2/3

• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m < p(1-a)] ≤ e-mpa2/2

E.g,
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 > 2(expectation)] ≤ e-(expectation)/3.
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 < (expectation)/2] ≤ e-(expectation)/8.

Typical use of bounds

• Proof: Just apply Hoeffding + union bound.

– Chance of failure at most 2|H|e-2|S|2.

– Set to . Solve.

Thm: If 𝑆 ≥
1

2𝜖2
ln 2 𝐻 + ln

1

𝛿
, then with prob 

≥ 1 − 𝛿, all ℎ ∈ 𝐻 have |errD(h)- errS(h)| < .

Hoeffding bounds:
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠/m > p + ] ≤ e-2m2

• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m < p - ] ≤ e-2m2

Typical use of bounds

• Proof: Just apply Hoeffding + union bound.

– Chance of failure at most 2|H|e-2|S|2.

– Set to . Solve.

• So, whp, best on sample is -best over D.

– Note: this is worse than previous bound (1/ has 
become 1/2), because we are asking for 
something stronger.

– Can also get bounds “between” these two.

Thm: If 𝑆 ≥
1

2𝜖2
ln 2 𝐻 + ln

1

𝛿
, then with prob 

≥ 1 − 𝛿, all ℎ ∈ 𝐻 have |errD(h)- errS(h)| < .

Typical use of bounds

Proof: apply Chernoff…

Thm: If 𝑆 ≥
6

𝜖
ln 𝐻 + ln

1

𝛿
, then with prob ≥ 1-, 

all ℎ ∈ 𝐻 with errD(h) > 2 have errS(h) > , and 
all ℎ ∈ 𝐻 with errD(h) < /2 have errS(h) < .

Chernoff bounds:
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m > p(1+a)] ≤ e-mpa2/3

• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 /m < p(1-a)] ≤ e-mpa2/2

E.g,
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 > 2(expectation)] ≤ e-(expectation)/3.
• Pr[𝑁ℎ𝑒𝑎𝑑𝑠 < (expectation)/2] ≤ e-(expectation)/8.
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