TTIC 31250
An Introduction to the Theory of
Machine Learning

Lecture 2: Online learning

Mistake-bound model:
*Basic results, relation to PAC, halving algorithm
+Connections to information theory

Combining “"expert advice":
+(Randomized) Weighted Majority algorithm
*Regret-bounds, connections to game theory

Online learning
* What if we don't want to make assumption
that data is coming from some fixed
distribution? Or any assumptions at all?

+ Can no longer talk about past performance
predicting future results.

+ Can we hope to say anything interesting??

Tdea: mistake bounds & regret bounds.

Mistake-bound model

C Mif A
<M
feC

* Note: can no longer talk about “*how much data do
I need to converge?” Maybe see same examples
over again and learn nothing new. But that's OK if
don't make mistakes either...

* Try to bound in ferms of size of examples n and
complexity of target s.

+ Cis in MB model if exists alg with

mistake bound and running time per stage poly(n,s).

Recap from last time

+ Last time: PAC model and Occam's razor.
- If data set has m = (1/g)[s In(2) + In(1/8)]

examples, then whp any consistent hypothesis
with size(h) < s has err(h) < ¢.

- Equivalently, size(h) < (sm-In(1/5))/In(2) suffices.
- “compression =learning”

+ Occam bounds =any class is learnable in
PAC model if computation time is no object.

Mistake-bound model

- View learning as a sequence of stages.
* In each stage, algorithm is given x, asked to

predict f(x), and then is told correct value.

* Make no assumptions about order of

examples.

* Goal is to bound total number of mistakes.

Mif A

Simple example: disjunctions

+ Suppose features are boolean: X = {0,1}".
+ Target is an OR function, like x5 v Xg Vv X;5.
+ Can we find an on-line strategy that makes

at most n mistakes?

+ Sure.

- Start with h(x) =x; vx, V.. vx,

- Invariant: {features in h} 2 {features in '}

- Mistake on negative: discard features in h set to
1in x. Maintains invariant & decreases |h| by 1.

- No mistakes on positives. So at most n mistakes
total.

Simple example: disjunctions

- Algorithm makes at most n mistakes.

* No deterministic alg can do better:
1000000 +or-?
0100000 +or-?
0010000 +or-2?
0001000 +or-2?

MB learnable = PAC learnable
Say alg A learns C with mistake-bound M.
Transformation 1:
* Run (conservative) A until it produces a hyp h
that survives = (1/¢)In(M/38) examples.
* Pr(fooled by any given h) < /M.
* Pr(fooled ever) <.
Uses at most (M/¢)In(M/3) examples total.

* Fancier method gets O(¢™![M + In(1/8)])

What can we do with
unbounded computation time?

* "Halving algorithm": take majority vote
over all consistent h € C. Makes at most
Ig(|C|) mistakes.

* What if we had a "prior" p over fns in C?

- Weight the vote according to p. Make at most
Ig(1/p¢) mistakes, where f is tfarget fn.

+ What if f was really chosen according to p?
- Expected number of mistakes < X [py I9(1/p})]
= entropy of distribution p.

MB model properties

An alg A is "conservative" if it only changes its
state when it makes a mistake.

Claim: if C is learnable with mistake-bound M,
then it is learnable by a conservative alg.

Why?

* Take generic alg A. Create new conservative
A’ by running A, but rewinding state if no
mistake is made.

+ Still < M mistakes because A still sees a
legal sequence of examples.

One more example...

+ Say we view each example as an integer
between 0 and 2n-1.

+ €={[0,a] : a< 2. (device fails if it gets too
hot)

+ In PAC model we could just pick any
consistent hypothesis. Does this work in MB
model?

* What would work?

What can we do with
unbounded computation time?

* “Halving algorithm": take majority vote
over all consistent h € C. Makes at most
Ig(|C|) mistakes.

+ What if C has functions of different sizes?

+ For any (prefix-free) representation, can
make at most 1 mistake per bit of target.

- Think of writing random Os and 1s until hit a
legal hypothesis or no longer a prefix of one.

- py = Pr(reach f) = 1/251z¢()
-1g(1/ps) = size(f).

Is halving alg optimal?
* Not necessarily
+ Can think of MB model as 2-player game
between alg and adversary.

- Adversary picks x to split C into C_(x) and
C.(x). [fns that label x as - or + respectively]

- Alg gets to pick one to throw out.
- Game ends when all fns left are equivalent.

- Adversary wants to make game last as long as
possible.

What if there is no perfect function?

Think of as h € C as "experts” giving advice
to you. Want to do nearly as well as best
of them in hindsight.

We'll look at a strategy whose running
time is O(|C|). So, only computationally
efficient when C is small.

Using "expert” advice

If one expert is perfect, can get <Ig(n) mistakes
with halving alg.

Can we do nearly as
well as the best one in hindsight?

Strategy #1:

+ Tterated halving algorithm. Same as before, but
once we've crossed off all the experts, restart
from the beginning.

+ Makes at most 1g(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

Is halving alg optimal?
* Halving algorithm: throw out larger seft.

- Optimal algorithm: throw out set with
larger mistake bound.

Using "expert” advice

+ We solicit n "experts” for their advice. (Will the
market go up or down?)
+ We then want to use their advice somehow to
make our prediction. E.g.,
Expt 1 Expt 2 Expt 3 neighbor’'s dog | truth

down up up
down up up

Can we do nearly as well as best in hindsight?

["expert” = someone with an opinion. Not necessarily someone
who knows anything.]
[note: would be trivial in PAC (i.i.d.) setting]

Weighted Majority Algorithm

Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.
Weights: 1

1
Predictions: U D We predict: U Truth: D
Weights: 1

Analysis: do nearly as well as best
expert in hindsight

M =

m =

W= n

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.
Weight of best expert is (1/2)". So,

(1/ < n(3, constant
ratio

Analysis .
- Say at time t we have fraction F, of y
weight on experts that made mistake.
- So, we have probability F, of making a mistake, and
we remove an ¢F, fraction of the total weight.
= Wring = n(1-e F)(1 - 2 Fp)..
= IN(Weing) = In(n) + X, [In(1 - e F)T < In(n) - 2 X, F,
(using In(1-x) < -x)
=1In(n) - ¢ M. (X F, = E[# mistakes])

- If best expert makes m mistakes, then In(Wg;,,) > In((1-€)™).

+ Now solve: In(n) - ¢ M > m In(1-¢).

Mo« min(1 7,_,4—\!7(_1!)

1
~ (L4+e/2)m+ — log(n)

Extensions

+ What if experts are actions? (rows in a matrix
game, ways fo drive to work,...)

+ At each time t, each has a loss (cost) in {0,1}.

+ Can still run the algorithm

- Rather than viewing as "pick a prediction with
prob proportional to its weight" ,

- View as "pick an expert with probability
proportional to its weight”

- Alg pays expected cost p; - ¢, = F,.
+ Same analysis applies.
Do nearly as well as best action in hindsight!

Randomized Weighted Majority

2.4(m + Ig n) not so good if the best expert makes a
mistake 20% of the time. Can we do better?

+ Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick
70:30) smooth out the worst case.

- Also, generalize 3 to 1- ¢.

—min(—e) +in(n) (14+e/2ym+]: In(n)

M = expecte Vi O Slnn _ 1/2 -

#mistakes : unlike most
worst-case

bounds, numbers

are pretty good.

Summarizing

- E[# mistakes] < (1+€)OPT + &-tlog(n)

0

- If set e=(log(n)/OPT)2 to balance the two terms

out (or use guess-and-double), get bound of
M < OPT+2(OPT-log n)/2 < OPT+2(T logn)Y/2

+ Define in T time steps as:

(avg per-day cost of alg) - (avg per-day cost of best
fixed expert in hindsight).
Goes to O or better as T-> o = “no-regret” algorithm].

Extensions

+ What if losses (costs) in [0,1]?
- Just modify alg update rule: w; « w;(1 —ecy).
* Fraction of wt removed from system is:

Qiwiec)/(Zjw)) = € X;p; c; = €[our expected cost]

- Analysis very similar to case of {0,1}.

World - life - opponent

(1-ec®)(1-ec)1
(1-ec,2)(1-ec,)1 scalin
(l-gcsz)(l—sc;)% so cos‘?s

) o1
(1-s¢,2)(1-sc,1)1

in[0,1]

¢ e
Guarantee: do nearly as well as fixed row in hindsight

Which implies doing nearly as well (or better)
than minimax optimal

World - life - opponent
(1-sc,2)(1-sc,)1
(1-sc,2)(1-ec 1)1 scalin
(1-sc5?)(1-sc3)t o cost
: : i in [0,1]
(1-ec,)(1-ec,H1
CZ
If play two RWM against each other, then empirical
distributions must be near-minimax-optimal.

(Else, one or the other could & would take advantage)

World - life - opponent
(1-gc4?)(1-ec)1
(1-ec,2)(1-ec,)1 scalin
(1-ec5?)(1-ecs1 so cos‘?s
. . i in[0,1]
(1-ec,)(1-ec,H1

c2

If play RWM against a best-response oracle, p will
approach minimax optimality.

(If if didn't, wouldn't be getting promised guarantee)

