
1

TTIC 31250
An Introduction to the Theory of

Machine Learning

Avrim Blum
04/08/20

Lecture 2: Online learning

Mistake-bound model:
•Basic results, relation to PAC, halving algorithm
•Connections to information theory

Combining “expert advice”:
•(Randomized) Weighted Majority algorithm
•Regret-bounds, connections to game theory

Recap from last time

• Last time: PAC model and Occam’s razor.
– If data set has m ≥ (1/e)[s ln(2) + ln(1/)]

examples, then whp any consistent hypothesis
with size(h) < s has err(h) < e.

– Equivalently, size(h) ≤ (em-ln(1/))/ln(2) suffices.

– “compression ⇒learning”

• Occam bounds ⇒any class is learnable in
PAC model if computation time is no object.

Online learning
• What if we don’t want to make assumption

that data is coming from some fixed
distribution? Or any assumptions at all?

• Can no longer talk about past performance
predicting future results.

• Can we hope to say anything interesting??

Idea: mistake bounds & regret bounds.

Mistake-bound model
• View learning as a sequence of stages.

• In each stage, algorithm is given x, asked to
predict f(x), and then is told correct value.

• Make no assumptions about order of
examples.

• Goal is to bound total number of mistakes.

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples
consistent with some f ∈ C.

Mistake-bound model

• Note: can no longer talk about “how much data do
I need to converge?” Maybe see same examples
over again and learn nothing new. But that’s OK if
don’t make mistakes either…

• Try to bound in terms of size of examples 𝑛 and
complexity of target 𝑠.

• C is learnable in MB model if exists alg with
mistake bound and running time per stage poly(n,s).

Alg A learns class C with mistake bound M if A
makes ≤ M mistakes on any sequence of examples
consistent with some f ∈C.

Simple example: disjunctions
• Suppose features are boolean: X = {0,1}n.

• Target is an OR function, like x3 v x9 v x12.
• Can we find an on-line strategy that makes

at most n mistakes?
• Sure.

– Start with h(x) = x1 v x2 v ... v xn

– Invariant: {features in h} ⊇ {features in f }
– Mistake on negative: discard features in h set to

1 in x. Maintains invariant & decreases |h| by 1.
– No mistakes on positives. So at most n mistakes

total.

1 2

3 4

5 6

2

Simple example: disjunctions
• Algorithm makes at most n mistakes.

• No deterministic alg can do better:

1 0 0 0 0 0 0 + or - ?

0 1 0 0 0 0 0 + or - ?

0 0 1 0 0 0 0 + or - ?

0 0 0 1 0 0 0 + or - ?

...

MB model properties
An alg A is “conservative” if it only changes its

state when it makes a mistake.

Claim: if C is learnable with mistake-bound M,
then it is learnable by a conservative alg.

Why?

• Take generic alg A. Create new conservative
A’ by running A, but rewinding state if no
mistake is made.

• Still ≤ M mistakes because A still sees a
legal sequence of examples.

MB learnable ⇒ PAC learnable
Say alg A learns C with mistake-bound M.

Transformation 1:

• Run (conservative) A until it produces a hyp h
that survives ≥ (1/e)ln(M/) examples.

• Pr(fooled by any given h) ≤ /M.

• Pr(fooled ever) ≤ .

Uses at most (M/e)ln(M/) examples total.

• Fancier method gets O(e-1[M + ln(1/)])

One more example…
• Say we view each example as an integer

between 0 and 2n-1.

• C = {[0,a] : a < 2n}. (device fails if it gets too
hot)

• In PAC model we could just pick any
consistent hypothesis. Does this work in MB
model?

• What would work?

What can we do with
unbounded computation time?

• “Halving algorithm”: take majority vote
over all consistent h ∈ C. Makes at most
lg(|C|) mistakes.

• What if we had a “prior” p over fns in C?
– Weight the vote according to p. Make at most

lg(1/pf) mistakes, where f is target fn.

• What if f was really chosen according to p?
– Expected number of mistakes ≤ h[ph lg(1/ph)]

= entropy of distribution p.

What can we do with
unbounded computation time?

• “Halving algorithm”: take majority vote
over all consistent h ∈ C. Makes at most
lg(|C|) mistakes.

• What if C has functions of different sizes?
• For any (prefix-free) representation, can

make at most 1 mistake per bit of target.
– Think of writing random 0s and 1s until hit a

legal hypothesis or no longer a prefix of one.

– 𝑝𝑓 = Pr 𝑟𝑒𝑎𝑐ℎ 𝑓 = 1/2𝑠𝑖𝑧𝑒 𝑓

– lg 1/𝑝𝑓 = 𝑠𝑖𝑧𝑒(𝑓).

7 8

9 10

11 12

3

Is halving alg optimal?
• Not necessarily

• Can think of MB model as 2-player game
between alg and adversary.
– Adversary picks x to split C into C-(x) and

C+(x). [fns that label x as – or + respectively]

– Alg gets to pick one to throw out.

– Game ends when all fns left are equivalent.

– Adversary wants to make game last as long as
possible.

• OPT(C) = MB when both play optimally.

Is halving alg optimal?
• Halving algorithm: throw out larger set.

• Optimal algorithm: throw out set with
larger mistake bound.

What if there is no perfect function?
Think of as h ∈ C as “experts” giving advice

to you. Want to do nearly as well as best
of them in hindsight.

These are called “regret bounds”.
➢Show that our algorithm does nearly as
well as best predictor in some class.

We’ll look at a strategy whose running
time is O(|C|). So, only computationally
efficient when C is small.

Using “expert” advice

• We solicit n “experts” for their advice. (Will the
market go up or down?)

• We then want to use their advice somehow to
make our prediction. E.g.,

Say we want to predict the stock market.

Can we do nearly as well as best in hindsight?

[“expert” = someone with an opinion. Not necessarily someone
who knows anything.]
[note: would be trivial in PAC (i.i.d.) setting]

If one expert is perfect, can get ≤ lg(n) mistakes
with halving alg.

But what if none is perfect? Can we do nearly as
well as the best one in hindsight?

Strategy #1:
• Iterated halving algorithm. Same as before, but

once we've crossed off all the experts, restart
from the beginning.

• Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

Using “expert” advice Weighted Majority Algorithm
Intuition: Making a mistake doesn't completely

disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Weights: 1 1 1 1

Predictions: U U U D We predict: U

Weights: ½ ½ ½ 1

Truth: D

13 14

15 16

17 18

4

Analysis: do nearly as well as best
expert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

constant
ratio

Randomized Weighted Majority

2.4(m + lg n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick

70:30) Idea: smooth out the worst case.

• Also, generalize ½ to 1- e.

unlike most
worst-case

bounds, numbers
are pretty good.

M = expected
#mistakes

Analysis
• Say at time t we have fraction Ft of

weight on experts that made mistake.

• So, we have probability Ft of making a mistake, and
we remove an eFt fraction of the total weight.
– Wfinal = n(1-e F1)(1 - e F2)...

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] ≤ ln(n) - e t Ft

(using ln(1-x) < -x)

= ln(n) - e M. (Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m).

• Now solve: ln(n) - e M > m ln(1-e).

Ft
Summarizing

• E[# mistakes] ≤ (1+e)OPT + e-1log(n)
= OPT + (eOPT + e-1log(n))

• If set e=(log(n)/OPT)1/2 to balance the two terms
out (or use guess-and-double), get bound of
M ≤ OPT+2(OPT⋅log n)1/2 ≤ OPT+2(T logn)1/2

• Define average regret in T time steps as:
(avg per-day cost of alg) – (avg per-day cost of best

fixed expert in hindsight).

Goes to 0 or better as T→ ∞ = “no-regret” algorithm].

Assuming here that
𝑂𝑃𝑇 ≥ log(𝑛)

Extensions
• What if experts are actions? (rows in a matrix

game, ways to drive to work,…)

• At each time t, each has a loss (cost) in {0,1}.

• Can still run the algorithm

– Rather than viewing as “pick a prediction with
prob proportional to its weight” ,

– View as “pick an expert with probability
proportional to its weight”

– Alg pays expected cost 𝑝𝑡 ⋅ 𝑐𝑡 = 𝐹𝑡 .

• Same analysis applies.

Do nearly as well as best action in hindsight!

Extensions
• What if losses (costs) in [0,1]?

• Just modify alg update rule: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 .

• Fraction of wt removed from system is:
(σ𝑖𝑤𝑖𝜖𝑐𝑖)/(σ𝑗𝑤𝑗) = 𝜖 σ𝑖 𝑝𝑖 𝑐𝑖 = 𝜖[𝑜𝑢𝑟 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡]

• Analysis very similar to case of {0,1}.

19 20

21 22

23 24

5

World – life - opponent

RWM (multiplicative weights alg)

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c1 c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

Guarantee: do nearly as well as fixed row in hindsight

Which implies doing nearly as well (or better)
than minimax optimal

World – life - opponent

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

If play RWM against a best-response oracle, Ԧ𝑝 will
approach minimax optimality.

(If if didn’t, wouldn’t be getting promised guarantee)

Connections to minimax optimality

World – life - opponent

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

If play two RWM against each other, then empirical
distributions must be near-minimax-optimal.

(Else, one or the other could & would take advantage)

Connections to minimax optimality

25 26

27

