TTIC 31250
An Introduction to the Theory of
Machine Learning

Avrim Blum
04/06/20
Lecture 1: logistics, intro, basic models
and issues

Announcements

+ Course webpage:
http://ttic.uchicago.edu/~avrim/MLT20/index.html

5 homework assignments

+ Small project: explore a theoretical question, try some
experiments, or read a paper and explain the idea. Short (4-5
page) writeup.

+ Take-home exam worth 1-2 hwks
"Volunteers" for hwk grading.

- Wel'll be figuring out some of the logistics as we go. For office
hours, just email me and we can set up a time to talk.

OK, let's get to it!

Machine learning can be used to...

* recognize speech, faces, objects in images
- play games, steer cars,
+ adapt programs fo users,
- classify documents, protein sequences....

Goals of machine learning theory
Develop and analyze models to understand:

+ what kinds of tasks we can hope to learn, and from
what kind of data,

+ what types of guarantees might we hope to achieve,
* other common issues that arise.

2
W Influences
954 o) e ———
s they \
—— Machine Learning Machine Learning
Statistics > = Theory - Practice
P
wo"“wﬂ‘

Goals of machine learning theory
Develop and analyze models to understand:

- what kinds of tasks we can hope to learn, and from
what kind of data,

+ what types of guarantees might we hope to achieve,
+ other common issues that arise.

A typical setting

+ Imagine r\ou want a computer program to help you
decide which email messages are spam and which
are important.

* Might represent each message by n features. (e.g.,
return address, keywords, spelling, etc.)

+ Take sample S of data, labeled according to
whether they were/weren't spam.

* Goal of algorithm is to use data seen so far produce
good prediction rule (a "hypothesis”) h(x) for
future data.

The concept learning setting

E.g_ money pills Mr. bad spelling known-sender | spam?
’ Y N Y Y N Y
a positive N N N A Y N
example N Y N N N )
a negative Y N N N Y N
example N N Y N Y N
Y N N Y N Y
N N Y N N N
N Y N Y N Y

Given data, some reasonable rules might be:
*Predict SPAM if —known AND (money OR pills)

*Predict SPAM if money + pills - known > 0.



http://ttic.uchicago.edu/~avrim/MLT20/index.html

Big questions
(A) How might we automatically generate rules
that do well on observed data?
[algorithm design]
(B)What kind of confidence do we have that
they will do well in the future?
[confidence bound / sample complexity]

For the confidence question, we'll need some
connection between future data and past data.

Natural formalization (SLT/PAC)

+ We are given sample S = {(x,y)}.

- View labels y as being produced by some
target function f.
+ Alg does optimization over S to produce
some hypothesis (prediction rule) h.
* Assume S is a random sample from some
probability distribution D. Goal is for h to do
well on new examples also from D.

Want Pry[h(x)=f(x)] < e.

Ideally,
errs(h)

errp(h) = true error = true risk = expected loss

Example of analysis: Decision Lists

‘ x1=17 ‘—"n-{ =17 |4"'${ *3=07 ‘&n
f b !

[ L 1

A Decision List is a list of if-then rules, where
each rule tests the value of a single feature.

Equivalently: a decision tree that doesn't branch.

Example of analysis: Decision Lists

‘ xTn ‘4"“-| xTL? ‘—"”—{ ,,T,? ‘—"‘Lu

L] L

Say we suspect there might be a good prediction
rule of this form.
1. Design an efficient algorithm A that will find a
DL with errs(h) = 0 if one exists.
2. Show that if S is of reasonable size, then
Pr[3 DL h with errs(h) = 0 but erry(h) > €] < 8.
3. This means that A is a good algorithm to use if
f is, in fact, a DL.
If Sis of reasonable size, then A produces a
hypothesis that is Probably Approximately Correct.

10

11

How can we find a consistent DL?

xr1 To T3 Ta Ts label
1 0 0 1 1 —+
O0— 1T —1—0 9] =
I—1—1—0 © =+
O—O0—0—1 V) =
1 1 0 1 1 +
1 0 0 O 1 —

if (x;=0) then -, else
if (x,=1) then +, else
if (x4=1) then +, else -

Decision List algorithm

+ Start with empty list.
+ Find if-then rule consistent with data.
(and satisfied by at least one example)

* Put rule at bottom of list so far, and cross of f
examples covered. Repeat until no examples remain.

If this fails (gets stuck) then:
*No rule consistent with remaining data.
+So no DL consistent with remaining data.
+So, ho DL consistent with original data.

OK, fine. Now why should we expect it

to do well on future data?

12

13



Confidence/sample-complexity

+ Consider some DL h with errp(h) > €, that

we're worried might fool us.
- Chance that errs(h) = 0 is at most (1-¢)!S!.
- Let |H| = number of DLs over n Boolean

features. |H| <n!-2-4"

So, Pr(3 DL h with erry(h)>e & errg(h)=0]

< [HI(1-e)!s! < [H]elsl,

- Thisis < & for |S| > (1/e)[In(|H]) + In(1/8)]
or about (1/€)[n In n + In(1/8)]

Example of analysis: Decision Lists

xl=17 ‘4"“-| ®=17 ‘4"”-{ X307
i i i

o 1 L

Say we suspect there might be a good prediction
rule of this form.
¢ Design an efficient algorithm A that will find a
o0 consistent DL if one exists.
\Agshow that if |S| is of reasonable size, then
009" Prlexists consistent DL h with erry(h) > €] < 8.
3. So, if fisin fact a DL, then whp A’s hypothesis
will be approximately correct. "PAC model”

14

15

PAC model more formally:

+ We are given sample S = {(x,y)}.
- Assume x's come from some fixed probability distribution D over
instance space.
- View labels y as being produced by some target function f.
+ Alg does optimization over S to produce some hypothesis
(prediction rule) h. Goal is for h to do well on new
examples also from D. I.e., Pry[h(x)=f(x)]< «.

Suppose we have an algo for a class of functions Cs.t.:
+ For any given 0, 50, any target f € C, any dist. D, the
algorithm produces h of erry(h)<e with prob. at least 1-5.

* Running time ¢ (— = )and sample size s (— 5 )
This is a PAC- Iearmng algo with running time t and sample size s.
PAC-learnable = exists algo with t, s polynomial in relevant params.

+ Learning is “proper” if h € C. Can also talk of “learning C by H".

We just gave a proper alg to PAC-learn decision lists.

Confidence/sample-complexity

* What's great is there was nothing special about
DLs in our argument.

- All we said was: "if there are not too many rules to
choose from, then it's unlikely one will have fooled
us just by chance.”

* And in particular, the number of examples needs
to only be proportional to log(|H|).

If |S| > 2 (In|H]| + In3) then with prob > 1 -5, all h €
H with errp(h) > e will have errg(h) > 0.

16

17

Occam's razor
William of Occam (~1320 AD):

"entities should not be multiplied
unnecessarily” (in Latin)

Which we interpret as: "in general, prefer
simpler explanations”.

Why? TIs this a good policy? What if we
have different notions of what's simpler?

Occam's razor (contd)
A computer-science-ish way of looking at it:

+ Say "simple” = "short description”.

+ At most 25 explanations can be < s bits long.
+ So, if the number of examples satisfies:

|S| > (1/e)[s In(2) + In(1/8)]

Then it's unlikely a bad simple explanation
will fool you just by chance.

18

19



Occam's razor (contd)?

Nice interpretation:

- Even if we have different notions of what's
simpler (e.g., different representation
languages), we can both use Occam's razor.

+ Of course, there's no guarantee there will be
a short explanation for the data. That
depends on your representation.

* And, doesn't say that complicated
explanations are necessarily bad either.

Decision trees (x)

- - +

- Decision trees over {0,1}" not
known to be PAC-learnable (time,
samples polynomial in size of f). *

* Given any data set S, it's easy to find a consistent
DT if one exists. How?

* Where does the DL argument break down?

+ Simple heuristics used in practice (ID3 etc.) don't
work for all cC even for uniform D.

- Would suffice to find the (apx) smallest DT
consistent with any dataset S, but that's NP-hard.

20

21

More examples

Other classes we can efficiently PAC-learn:
(how?)

+ AND-functions, OR-functions

+ 3-CNF formulas (3-SAT formulas), 3-DNF
formulas

+ k-Decision lists (each if-condition is a
conjunction of size k), k is constant.

Given a data set S, deciding if there is a
consistent 2-term DNF formula is NP-complete.
Does that mean 2-term DNF is hard to learn?

More examples

Hard to learn C by C, but easy to learn C by
H, where H = {2-CNF}.
Given a data set S, deciding if there is a

consistent 2-term DNF formula is NP-complete.
Does that mean 2-term DNF is hard to learn?

22

If computation-time is ho object, then
any class is PAC-learnable

+ Occam bounds = generic way to learn any f from

O(size(f)) samples if ignore computation time:

- If we know s = size(f) in advance, we can just
draw (1/¢)[s + In(1/3)] examples and search for a
consistent rule of size at most s.

- If we don't we can guess, check, and double our
guess if it failed.

24

23

If computation-time is no object, then
any class is PAC-learnable

+ Occam bounds = generic way to learn any f from
O(size(f)) samples if ignore computation time:
- Let 54=10, 5; = 6/2. For i=1,2,.. do:
* Request (1/g)[s; + In(1/5,)] examples S;.
+ Check if there is a function of size at most s;
consistent with S;. If so, output it and halt.

* Siq = 25, 8, = 8/2.
- At most §; + 8, + ... < & chance of failure.
- Total data used: O((1/¢)[size(f)+In(1/5)In(size(f))]).

1st terms sum to O(size(f)) by telescoping. 2" terms sum to: In (%) +
1 (2) + oot In (290) < inGsize()) In (22222) = 2 (size()) + InGsize(F) n (2)

25



More about the PAC model

Algorl’rhm PAC-learns a class of functions C if:
For any given >0, 80, any target f € C, any dist. D, the
algorithm pr‘oduces hof err(h)e with pr‘ob at least 1-5.

* Running time and sample sizes polynomial in relevant
parameters: 1/¢, 1/3, n, size(f).

* Require h fo be poly-time evaluatable. Learning is called
"proper” if h € C. Can also talk about “learning C by H".

-+ What if your alg only worked for § = 3, what would
you do?

+ What if it only worked for ¢ = %, or even ¢ = $-1/n?
This is called weak-learning. Will get back to later.

+ Agnostic learning model: Don't assume anything
about f. Try to reach error opt(C) + ¢.

More about the PAC model

Algom‘rhm PAC-learns a class of functions C if:
For any given >0, 80, any target f € C, any dist. D, the
algorithm produces hof err(h)e with pr‘ob at least 1-5.
* Running time and sample sizes polynomial in relevant
parameters: 1/¢, 1/3, n, size(f).

* Regquire h to be poly-time evaluafable. Learning is called
"proper” if h € C. Can also talk about “learning C by H".

Drawbacks of model:
In the real world, there's never a perfect function in the
class. But hard to prove guarantees for efficient algos on
finding near-best function.
- Convex “surrogate losses” (will get to later)
+ In the real world, labeled examples may be more expensive
than running time.

26

More about the PAC model

Algor‘n‘hm PAC-learns a class of functions C if:
For any given >0, 80, any target f € C, any dist. D, the
algorithm pr‘oduces hof err(h)e with prob at least 1-5.

* Running time and sample sizes polynomial in relevant
parameters: 1/¢, 1/3, n, size(f).

+ Require h to be poly-time evaluatable. Learning is called
“proper” if h € C. Can also talk about “learning C by H".

Drawbacks of model:
"Prior knowledge/beliefs" might be not just over form of
target but other relations o data.

- Doesn't address other kinds of info (cheap unlabeled data,
pairwise similarity information).

+ Assumes fixed distribution

27

Extensions we'll get at later:

- Replace log(|H|) with “effective number of
degrees of freedom".

- There are infinitely many linear separators, but
not that many really different ones.

* Other more refined analyses.

28

Extensions we'll get at later:

* What if we don't want to assume data is iid?
* Models for continually learning

+ Connections to game theory

+ Settings where have limited feedback

+ Combining learning with experimentation

+ Issues like privacy

"See" you Wednesday!

30

29



