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TTIC 31250
An Introduction to the Theory of 

Machine Learning

Lecture 1: logistics, intro, basic models 
and issues

Avrim Blum
04/06/20

Announcements
• Course webpage:

http://ttic.uchicago.edu/~avrim/MLT20/index.html

• 5 homework assignments

• Small project: explore a theoretical question, try some 
experiments, or read a paper and explain the idea. Short (4-5 
page) writeup.

• Take-home exam worth 1-2 hwks

• “Volunteers” for hwk grading.

• We’ll be figuring out some of the logistics as we go.  For office 
hours, just email me and we can set up a time to talk.

OK, let’s get to it!

Machine learning can be used to…
• recognize speech, faces, objects in images
• play games, steer cars,
• adapt programs to users,
• classify documents, protein sequences,...

Goals of machine learning theory
Develop and analyze models to understand: 
• what kinds of tasks we can hope to learn, and from 

what kind of data,
• what types of guarantees might we hope to achieve,
• other common issues that arise.

Influences

Machine Learning 
Theory      Statistics

Machine Learning 
Practice   

Goals of machine learning theory
Develop and analyze models to understand: 
• what kinds of tasks we can hope to learn, and from 

what kind of data,
• what types of guarantees might we hope to achieve,
• other common issues that arise.

A typical setting
• Imagine you want a computer program to help you 

decide which email messages are spam and which 
are important.

• Might represent each message by n features. (e.g., 
return address, keywords, spelling, etc.)

• Take sample S of data, labeled according to 
whether they were/weren’t spam.

• Goal of algorithm is to use data seen so far produce 
good prediction rule (a “hypothesis”) h(x) for 
future data. 

The concept learning setting
E.g., 

Given data, some reasonable rules might be:
•Predict SPAM if ¬known AND (money OR pills)

•Predict SPAM if money + pills – known > 0.

•...

a positive 

example
a negative 

example
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Big questions
(A) How might we automatically generate rules 

that do well on observed data?
[algorithm design]

(B)What kind of confidence do we have that 
they will do well in the future?
[confidence bound / sample complexity]

for a given learning alg, how much data do we need, and 
how can we design alg to need less?

For the confidence question, we’ll need some 
connection between future data and past data.

Natural formalization (SLT/PAC)

• We are given sample S = {(x,y)}.

– View labels y as being produced by some 
target function f. 

• Alg does optimization over S to produce 
some hypothesis (prediction rule) h.

• Assume S is a random sample from some 
probability distribution D. Goal is for h to do 
well on new examples also from D.

Want PrD[h(x)f(x)] ≤ e.

Email msg Spam or not?

𝑒𝑟𝑟𝐷(ℎ) = true error = true risk = expected loss

Ideally, 
𝑒𝑟𝑟𝑆 ℎ
(error rate 
on sample) 
is low

Example of analysis: Decision Lists

A Decision List is a list of if-then rules, where 
each rule tests the value of a single feature.

Equivalently: a decision tree that doesn’t branch.

Example of analysis: Decision Lists

Say we suspect there might be a good prediction 
rule of this form.

1. Design an efficient algorithm A that will find a 
DL with 𝑒𝑟𝑟𝑆 ℎ = 0 if one exists.

2. Show that if S is of reasonable size, then   
Pr[∃ DL h with 𝑒𝑟𝑟𝑆 ℎ = 0 but 𝑒𝑟𝑟𝐷 ℎ > 𝜖] < d.

3. This means that A is a good algorithm to use if 
f is, in fact, a DL.

If S is of reasonable size, then A produces a 
hypothesis that is Probably Approximately Correct.

How can we find a consistent DL?

if (x1=0) then -, else
if (x2=1) then +, else

if (x4=1) then +, else -

Decision List algorithm
• Start with empty list.

• Find if-then rule consistent with data. 
(and satisfied by at least one example)

• Put rule at bottom of list so far, and cross off 
examples covered. Repeat until no examples remain.

If this fails (gets stuck) then:
•No rule consistent with remaining data.
•So no DL consistent with remaining data.
•So, no DL consistent with original data.

OK, fine.  Now why should we expect it 
to do well on future data?
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Confidence/sample-complexity

• Consider some DL h with 𝑒𝑟𝑟𝐷 ℎ > 𝜖, that 
we’re worried might fool us.

• Chance that 𝑒𝑟𝑟𝑆 ℎ = 0 is at most (1-e)|S|.
• Let |H| = number of DLs over n Boolean 

features.  |H| ≤ 𝑛! ⋅ 2 ⋅ 4𝑛

So, Pr[∃ DL h with errD(h)>e & errS(h)=0]
· |H|(1-e)|S| · |H|e-²|S|.

• This is < d for |S| > (1/e)[ln(|H|) + ln(1/d)]

or about (1/e)[n ln n + ln(1/d)]

Example of analysis: Decision Lists

Say we suspect there might be a good prediction 
rule of this form.

1. Design an efficient algorithm A that will find a 
consistent DL if one exists.

2. Show that if |S| is of reasonable size, then 
Pr[exists consistent DL h with errD(h) > e] < d.

3. So, if f is in fact a DL, then whp A’s hypothesis 
will be approximately correct.  “PAC model”

PAC model more formally:
• We are given sample S = {(x,y)}.

– Assume x’s come from some fixed probability distribution D over 
instance space.

– View labels y as being produced by some target function f. 

• Alg does optimization over S to produce some hypothesis 
(prediction rule) h.  Goal is for h to do well on new 
examples also from D. I.e., PrD[h(x)f(x)] < e.

Suppose we have an algo for a class of functions C s.t.:
• For any given e>0, d>0, any target f 2 C, any dist. D, the 

algorithm produces h of errD(h)<e with prob. at least 1-d.

• Running time 𝑡
1

𝜖
,
1

𝛿
, … and sample size 𝑠

1

𝜖
,
1

𝛿
, … .

This is a PAC-learning algo with running time 𝑡 and sample size 𝑠. 
PAC-learnable ≡ exists algo with 𝑡, 𝑠 polynomial in relevant params.
• Learning is “proper” if h 2 C.  Can also talk of “learning C by H”.

We just gave a proper alg to PAC-learn decision lists.

Confidence/sample-complexity

• What’s great is there was nothing special about 
DLs in our argument.

• All we said was: “if there are not too many rules to 
choose from, then it’s unlikely one will have fooled 
us just by chance.”

• And in particular, the number of examples needs 
to only be proportional to log(|H|).

If 𝑆 ≥
1

𝜖
ln 𝐻 + ln

1

𝛿
then with prob ≥ 1 − 𝛿, all ℎ ∈

𝐻 with 𝑒𝑟𝑟𝐷 ℎ ≥ 𝜖 will have 𝑒𝑟𝑟𝑆 ℎ > 0.

Occam’s razor
William of Occam (~1320 AD):

“entities should not be multiplied 
unnecessarily” (in Latin)

Which we interpret as: “in general, prefer 
simpler explanations”.

Why?  Is this a good policy?  What if we 
have different notions of what’s simpler?

Occam’s razor (contd)
A computer-science-ish way of looking at it:

• Say “simple” = “short description”.

• At most 2s explanations can be < s bits long.

• So, if the number of examples satisfies:

|S| > (1/e)[s ln(2) + ln(1/d)]

Then it’s unlikely a bad simple explanation 
will fool you just by chance.

Think of as 

10x #bits to 

write down h.
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Occam’s razor (contd)2

• Even if we have different notions of what’s 
simpler (e.g., different representation 
languages), we can both use Occam’s razor.

• Of course, there’s no guarantee there will be 
a short explanation for the data.  That 
depends on your representation.

• And, doesn’t say that complicated 
explanations are necessarily bad either.

Nice interpretation:

Decision trees
• Decision trees over {0,1}n not 

known to be PAC-learnable (time, 

samples polynomial in size of f).

x3

x5x2

+ +- -

• Given any data set S, it’s easy to find a consistent 
DT if one exists.  How?

• Where does the DL argument break down?

• Simple heuristics used in practice (ID3 etc.) don’t 
work for all c2C even for uniform D.

• Would suffice to find the (apx) smallest DT 
consistent with any dataset S, but that’s NP-hard.

More examples
Other classes we can efficiently PAC-learn: 

(how?)
• AND-functions, OR-functions
• 3-CNF formulas  (3-SAT formulas), 3-DNF 

formulas
• k-Decision lists (each if-condition is a 

conjunction of size k), k is constant.

Given a data set S, deciding if there is a 
consistent 2-term DNF formula is NP-complete.  
Does that mean 2-term DNF is hard to learn?

More examples

Given a data set S, deciding if there is a 
consistent 2-term DNF formula is NP-complete.  
Does that mean 2-term DNF is hard to learn?

Hard to learn C by C, but easy to learn C by 
H, where H = {2-CNF}.

If computation-time is no object, then 
any class is PAC-learnable

• Occam bounds ) generic way to learn any 𝑓 from 
𝑂(𝑠𝑖𝑧𝑒 𝑓 ) samples if ignore computation time:

– If we know s = 𝑠𝑖𝑧𝑒(𝑓) in advance, we can just 
draw (1/e)[s + ln(1/d)] examples and search for a 
consistent rule of size at most s.

– If we don’t we can guess, check, and double our 
guess if it failed.

If computation-time is no object, then 
any class is PAC-learnable

• Occam bounds ) generic way to learn any 𝑓 from 
𝑂(𝑠𝑖𝑧𝑒 𝑓 ) samples if ignore computation time:

– Let s1=10, d1 = d/2.  For i=1,2,… do:
• Request (1/e)[si + ln(1/di)] examples Si.

• Check if there is a function of size at most si

consistent with Si.  If so, output it and halt.

• si+1 = 2si, di+1 = di/2.

– At most d1 + d2 + … · d chance of failure.

– Total data used: O((1/e)[size(f)+ln(1/d)ln(size(f))]).

1st terms sum to 𝑂(𝑠𝑖𝑧𝑒 𝑓 ) by telescoping.  2nd terms sum to: ln
2

𝛿
+

ln
4

𝛿
+ …+ ln

𝑠𝑖𝑧𝑒 𝑓

𝛿
≤ ln(𝑠𝑖𝑧𝑒 𝑓) ln

𝑠𝑖𝑧𝑒 𝑓

𝛿
= ln2 𝑠𝑖𝑧𝑒 𝑓 + ln(𝑠𝑖𝑧𝑒 𝑓 ) ln

1

𝛿

20 21

22 23

24 25



5

More about the PAC model

• What if your alg only worked for d = ½, what would 
you do?

• What if it only worked for e = ¼, or even e = ½-1/n?  
This is called weak-learning.  Will get back to later.

• Agnostic learning model: Don’t assume anything 
about f.  Try to reach error opt(C) + e.

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the 

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant 

parameters: 1/e, 1/d, n, size(f).
• Require h to be poly-time evaluatable.  Learning is called 

“proper” if h 2 C.  Can also talk about “learning C by H”.

More about the PAC model

Drawbacks of model:
• In the real world, there’s never a perfect function in the 

class.  But hard to prove guarantees for efficient algos on 
finding near-best function.
– Convex “surrogate losses” (will get to later) 

• In the real world, labeled examples may be more expensive 
than running time. 

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the 

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant 

parameters: 1/e, 1/d, n, size(f).
• Require h to be poly-time evaluatable.  Learning is called 

“proper” if h 2 C.  Can also talk about “learning C by H”.

More about the PAC model

Drawbacks of model:
• “Prior knowledge/beliefs” might be not just over form of 

target but other relations to data.
• Doesn’t address other kinds of info (cheap unlabeled data, 

pairwise similarity information).
• Assumes fixed distribution

Algorithm PAC-learns a class of functions C if:
• For any given e>0, d>0, any target f 2 C, any dist. D, the 

algorithm produces h of err(h)<e with prob. at least 1-d.
• Running time and sample sizes polynomial in relevant 

parameters: 1/e, 1/d, n, size(f).
• Require h to be poly-time evaluatable.  Learning is called 

“proper” if h 2 C.  Can also talk about “learning C by H”.

Extensions we’ll get at later:

• Replace log(|H|) with “effective number of 
degrees of freedom”.

+

+

+

+

-
-

-

-

– There are infinitely many linear separators, but 
not that many really different ones.

• Other more refined analyses.

Extensions we’ll get at later:

• What if we don’t want to assume data is iid?
• Models for continually learning
• Connections to game theory
• Settings where have limited feedback
• Combining learning with experimentation
• Issues like privacy

“See” you Wednesday!
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