
TTIC 31250 An Introduction to the Theory of Machine Learning

Homework # 5 Due: May 21, 2018

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

Note: This is the last homework assignment. Your projects are due on May 30, the last
day of class.

Exercises:

1. [Zero-sum Games] Consider the following zero-sum game. Player A (Alice) hides
either a nickel or a quarter behind her back. Then, player B (Bob) guesses which it
is. If Bob guesses correctly, he wins the coin. If Bob guesses incorrectly, he has to pay
Alice 15 cents. In other words, the amount that Alice wins can be summarized by the
following payoff matrix:

Alice hides

Bob guesses
N Q

N −5 +15
Q +15 −25

This seems like a fair game since when Bob loses, he pays Alice the average of 5 and
25, but we will see that one of the players in fact has an advantage.

(a) What is the value to Alice of the strategy “with probability 1/2 hide a nickel
and with probability 1/2 hide a quarter”? (The value of a strategy is its value
assuming that the opponent knows it and plays a best-response to it).

(b) What is Alice’s minimax optimal strategy, and what is its value?

(c) What is Bob’s minimax optimal strategy, and what is its value to Bob?

(d) Is it better to be Alice or Bob in this game?

Problems:

2. [On approximate Nash equilibria] Consider a two-player general-sum game. Let
us for concreteness focus on games where each player has n actions, and use R to
denote the payoff matrix for the row player and C to denote the payoff matrix for the
column player. (So if the row-player plays action i and the column-player plays action
j, then the row-player gets Rij and the column-player gets Cij. Recall that a Nash
Equilibrium is a pair of distributions p and q (one for each player) such that neither
player has any incentive to deviate from its distribution assuming that the other player
doesn’t deviate from its distribution either. Formally, a pair of distributions p (for the



row player) and q (for the column player) is a Nash equilibrium if the following holds:
assuming the column player plays at random from q, the expected payoff to the row
player for each row i with pi > 0 is equal to the maximum payoff out of all the rows
(eTi Rq = maxi′ e

T
i′Rq); and, assuming the row player plays at random from p, the

expected payoff to the column player for each column j with qj > 0 is equal to the
maximum payoff out of all the columns (pTCej = maxj′ p

TCej′). (Here, ei denotes the
column-vector with a 1 in position i and 0 everywhere else).

Now, assume we have a game in which all payoffs are in the range [0, 1]. Define a pair
of distributions p, q to be an “ε-Nash” equilibrium if each player has at most ε incentive
to deviate. That is, the expected payoff to the row player for each row i with pi > 0
is within ε of the maximum payoff out of all the rows, and vice-versa for the column
player.

Using the fact that Nash equilibria must exist, show that there must exist an ε-Nash
equilibrium in which each player has positive probability on at most O( 1

ε2
log n) actions

(rows or columns).

Hint #1: what is a good randomized way to get a sparse approximation to a probability
distribution p that was handed to you?

Hint #2: your solution will require using Hoeffding bounds and the union bound.

Note: this fact yields an nO( 1
ε2

logn)-time algorithm for finding an ε-Nash equilibrium.
No PTAS (algorithm running in time polynomial in n for any fixed ε > 0) is known,
however.

3. Compression bounds. For some learning algorithms, the hypothesis produced by
running the algorithm on a training set of size n can be uniquely described by giving
k of the training examples. E.g., if you are learning an interval on the line using the
simple algorithm “take the smallest interval that encloses all the positive examples,”
then the hypothesis can be reconstructed from just being told the outermost positive
examples, so k = 2. For a conservative Mistake-Bound learning algorithm, you can
reconstruct the hypothesis produced by the algorithm by just looking at the examples
on which a mistake was made, so k ≤ M , where M is the algorithm’s mistake-bound.
(In this case, you would also care about the order in which those examples arrived.)

Your job in this problem is to prove a PAC generalization guarantee based on k (es-
sentially, proving that if k is small, then this is a legitimate notion of a “simple”
hypothesis; these are called compression bounds). Specifically, assume we fix a recon-
struction procedure, so that for a given sequence of examples S ′ we have a well-defined
hypothesis hS′ . You will show that

Pr
S∼Dn

(
∃S ′ ⊆ S, |S ′| = k, such that hS′ has 0 error on S − S ′ but true error > ε

)
≤ δ,

so long as

n ≥ 1

ε

(
k lnn+ εk + ln

1

δ

)
.
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(a) First, prove the following easier statement. Let’s use x1, ..., xn to denote the
examples in S. Now suppose you are given a sequence of indices i1, ...ik. Define
Ai1,...,ik to be the event that h(xi1 ,...,xik ) has zero error on all examples xj ∈ S such
that j 6∈ {i1, ..., ik} and yet the true error of h(xi1 ,...,xik ) is more than ε. Prove that

if S ∼ Dn, the probability of event Ai1,...,ik is at most (1− ε)n−k.
(b) Now use this to prove the guarantee in the displayed equation above.
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