
TTIC 31250 An Introduction to the Theory of Machine Learning

Homework # 4 Due: May 9, 2018

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

Problems:

1. [PAC-learning of small OR-functions] Suppose the target function is a disjunc-
tion (OR-function) of r out of n boolean variables, for r � n. The list-and-cross-off
algorithm for learning an OR function might produce a hypothesis of size O(n), so its
sample size for PAC-learning would be Õ(n/ε). Alternatively, we could try all O(nr)
possible OR-functions of size ≤ r and pick the smallest consistent with our training
sample. This would require only Õ((r log n)/ε) samples but takes time exponential in
r. Here, give a different, polynomial-time, algorithm that guarantees to find an OR
of at most O(r logm) variables that is consistent with the training data, where m is
the number of training examples. Describe a variant of your algorithm that runs in
polynomial time and finds an OR of only O(r log(1/ε)) variables, with error at most
ε/2 on the training data. Note that by Occam + Chernoff bounds, the latter algorithm
requires sample size at most O(1

ε
((r log 1/ε) log n+log 1/δ)) to learn in the PAC model,

so is just very slightly worse than the exponential-time algorithm that tries all O(nr)
OR-functions of size ≤ r.

Hint: think about the greedy set-cover algorithm (look it up if you haven’t seen it).

2. [Uniform distribution learning of DNF Formulas] Give an algorithm to learn
the class of DNF formulas having at most s terms over the uniform distribution on
{0, 1}n, which has sample size polynomial in n and s, and running time nO(log(s/ε)). So,
your algorithm matches the SQ-dimension lower bounds.

Hint: Think of your algorithm for Problem 1.

Note: your solution requires that data come from the uniform distribution. The best
algorithm known for learning polynomial-size DNF formulas over general distributions
has running time roughly 2O(n1/3) [Klivans-Servedio].

3. [SQ learning Decision Lists and Trees] Give an algorithm to learn the class
of decision lists in the SQ model (and argue correctness for your algorithm). Your
algorithm should work for any distribution D (not just the uniform distribution). Be
clear about what specifically the queries χ are and the tolerances τ . Remember, you
are not allowed to ask for conditional probabilities like Pr[A|B] but you can ask for
Pr[A ∧B].



So, combined with your results from Homework 1, this gives an algorithm for learning
decision trees of size s in the SQ model with nO(log s) queries of tolerance 1/nO(log s),
matching our SQ-dimension lower bounds.

Note: this problem can be a bit tricky. In particular, it is possible to create a distri-
bution D over {0, 1}n and a target decision list c with the following properties:

(a) PrD[c(x) = 1] = 1/2.

(b) For all 1 ≤ i ≤ n, either PrD[xi = 1] ≤ 2−n/2 or else PrD[c(x) = 1|xi = 1] = 1/2.

In particular, no variable is noticeably correlated with the target, and an algorithm
based on trying to find an xi such that Pr[c(x) = y|xi = b] is large for some y, b such
that the event “xi = b” happens with noticeable probability is going to have trouble.
Note: this is one reason that there is no known analog of Problem 1 for decision lists.

2


