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Semi-Supervised Learning
• The main models we have been studying (PAC, mistake-

bound) are for supervised learning.

– Given labeled examples S = {(xi,yi)}, try to learn a good 
prediction rule.

• Unfortunately, labeled data is often expensive.  

• On the other hand, unlabeled data is often plentiful and 
cheap.

– Documents, images, OCR, web-pages, protein sequences, 
…

Can we use unlabeled data to help?
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Semi-Supervised Learning

• Two scenarios: active learning and semi-supervised 
learning.

– Active learning: have ability to ask for labels of 
unlabeled points of interest.
• Can you do better than just ask for labels on random 

subset?

– Semi-supervised learning: no querying. Just have 
lots of additional unlabeled data.
• Will look today at SSL.  This is the most puzzling one 

since unclear what unlabeled data can do for you.

Semi-Supervised Learning

Given a set 𝐿 of labeled data and set 𝑈 of unlabeled 
data.  Can we use 𝑈 to help?

• What can the unlabeled data possibly do for us?

• Abstract high-level answer we will get to is: 
– Going back to “Occam’s razor”, unlabeled data can help us 

improve our notion of what is simpler than what, by 
identifying regularities that appear in the data.

• But first: 
– Discuss several methods that have been developed for 

using unlabeled data to help.

– Then will give an extension of PAC model to make sense 
of what’s going on.
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Plan for today

Methods:
• Co-training

• Transductive SVM

• Graph-based methods

Model:
• Augmented PAC model for SSL.

There’s also a book “Semi-supervised 
learning” on the topic.

Co-training
[B&Mitchell’98] motivated by [Yarowsky’95]

Yarowsky’s Problem & Idea:
• Some words have multiple meanings (e.g., “plant”).  Want to 

identify which meaning was intended in any given instance.

• Standard approach: learn function from local context to 
desired meaning, using labeled data. “…nuclear power plant 
generated…”

• Idea: use fact that in most documents, multiple uses have 
same meaning. Use to transfer confident predictions over.
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Co-training
Actually, many problems have a similar characteristic.

• Examples x can be written in two parts (x1,x2).

• Either part alone is in principle sufficient to 
produce a good classifer.

• E.g., speech+video, image and context, web page 
contents and links.

• So if confident about label for x1, can use to impute 
label for x2, and vice versa. Use each classifier to 
help train the other.

“Multi-view learning”

Example: classifying webpages
• Co-training: Agreement between two parts

– examples contain two sets of features, i.e. an example is 
x=〈x1, x2〉 and the belief is that the two parts of the 
example are sufficient and consistent, i.e. ∃ c1, c2 such that 
c1(x1)=c2(x2)=c(x)
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Example: intervals
Suppose x1 ∈ R, x2 ∈ R.  c1 = [a1,b1], c2 = [a2,b2]

+

+
+

+ +

Co-Training Theorems
• [BM98] if x1, x2 are independent given the label:    D = 

p(D1
+ x D2

+) + (1-p)(D1
- x D2

-), and if C is SQ-learnable (or 
from random class noise), then can learn from an initial 
“weakly-useful” h1 plus unlabeled data.

• Def: h is weakly-useful if 

Pr[h(x)=1|c(x)=1] > Pr[h(x)=1|c(x)=0] + .
(same as weak hyp if target c is balanced)

• E.g., say “syllabus” appears on 1/3 of course pages but only 1/6 of 
non-course pages.

• Idea: use as a noisy label of other view.  (helpful trick: balance 
data so observed labels are 50/50)
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Co-Training Theorems
• [BB] in some cases (e.g., LTFs), you can use this to 

learn from a single labeled example.

– Pick random hyperplane and boost (using above).

– Repeat process multiple times.

– Get 4 kinds of hyps: {close to c, close to ¬c, 
close to 1, close to 0}

– Just need one labeled example to choose right 
one.

• [BBY] if don’t want to assume independence, and C 
is learnable from positive data only, then suffices 
for D+ to have expansion.

Co-Training and expansion

Text infoLink info

+

+

+

X1
X2

Want initial sample to expand to full set of positives 
after limited number of iterations.
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Transductive SVM [Joachims99]

• Suppose we believe target separator goes through 
low density regions of the space/large margin.

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U)

+

+

_

_

Labeled data only

+

+
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+

+

_

_

Transductive SVM
SVM

Transductive SVM [Joachims99]

• Suppose we believe target separator goes through 
low density regions of the space/large margin.

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U)

• Unfortunately, optimization problem is now NP-
hard.  Algorithm instead does local optimization.
– Start with large margin over labeled data. Induces 

labels on U.

– Then try flipping labels in greedy fashion.

+

+
_

_

+
+

_

_
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+

_
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Transductive SVM [Joachims99]

• Suppose we believe target separator goes through 
low density regions of the space/large margin.

• Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U)

• Unfortunately, optimization problem is now NP-
hard.  Algorithm instead does local optimization.
– Also, work on polynomial-time approximation algorithms. 

(“furthest hyperplane problem”)

+

+
_

_

+
+

_

_

+
+

_

_

Graph-based methods
• Suppose we believe that very similar examples 

probably have the same label.

• If you have a lot of labeled data, this suggests a 
Nearest-Neighbor type of alg.

• If you have a lot of unlabeled data, suggests a 
graph-based method.
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Graph-based methods
• Transductive approach.  (Given L + U, output 

predictions on U).

• Construct a graph with edges between very similar 
examples.

• Solve for:

– Minimum cut

– Minimum “soft-cut” 
[ZhuGhahramaniLafferty]

– Spectral partitioning

Graph-based methods
• Suppose just two labels: 0 & 1. 

• Solve for labels f(x) for unlabeled examples 
x to minimize:
– e=(u,v)|f(u)-f(v)|   [soln = minimum cut]

– e=(u,v) (f(u)-f(v))2 [soln = electric potentials]

• In case of min-cut, can use counting/VC-dim results 
to get confidence bounds.

-

-+

+
– VC-dimension of class of cuts 

of size 𝑘 is 𝑂 𝑘/𝜆𝑚𝑖𝑛 , where 
𝜆𝑚𝑖𝑛 is the minimum nontrivial 
cut in the graph. [Kleinberg]
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How can we think about these 
approaches to using unlabeled 

data in a PAC-style model?

PAC-SSL Model [BB]

• Augment the notion of a concept class C with a 
notion of compatibility  between a concept and 
the data distribution.

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion )

• Express relationships that one hopes the target 
function and underlying distribution will possess.

• Idea: use unlabeled data & the belief that the 
target is compatible to reduce C down to just {the 
highly compatible functions in C}.
– Or, order the functions in C by compatibility.
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PAC-SSL Model [BB]

• Augment the notion of a concept class C with a 
notion of compatibility  between a concept and 
the data distribution.

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion )

• To do this, need to be able to estimate 
compatibility of h with D from unlabeled data.

• Require that the degree of compatibility be 
something that can be estimated from a finite 
sample.

PAC-SSL Model [BB]

• Augment the notion of a concept class C with a 
notion of compatibility  between a concept and 
the data distribution.

• “learn C” becomes “learn (C,)” (i.e. learn 
class C under compatibility notion )

• Require  to be an expectation over individual 
examples:

– (h,D)=Ex~D[(h, x)] = compatibility of h with D, 

(h,x) ∈ [0,1]

– errunl(h)=1-(h, D) = incompatibility of h with D 

(unlabeled error rate of h)
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Margins, Compatibility

• Margins: belief is that should exist a large margin separator.

• Incompatibility of h and D (unlabeled error rate of h): the 
probability mass within distance  of h.

• Can be written as an expectation over individual examples 
(h,D)=𝐸𝑥∼𝐷[(h,x)] where:

• (h,x)=0 if dist(x,h) <

• (h,x)=1 if dist(x,h) > 

Highly compatible +

+

+

_

_

𝑒𝑟𝑟𝑢𝑛𝑙 ℎ = Pr
x∼𝐷

[𝑑𝑖𝑠𝑡 𝑥, ℎ < 𝛾]

• Margins: belief is that should exist a large margin separator.

• If do not want to commit to  in advance,  define (h,x) to be 
a smooth function of dist(x,h), e.g.: 

• Illegal notion of compatibility: the largest  s.t. D has 
probability mass exactly zero within distance  of h.

Highly compatible +

+

+

_

_

Margins, Compatibility

𝑒𝑟𝑟𝑢𝑛𝑙 ℎ = 𝐸𝑥∼𝐷 𝑒
−
𝑑𝑖𝑠𝑡 𝑥,ℎ

2𝜎2
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Co-Training, Compatibility

• Co-training: examples come as pairs <x1, x2> and the goal is 
to learn a pair of functions  <h1, h2>

• Hope is that the two parts of the example are consistent.

• Legal (and natural) notion of compatibility:  

– the compatibility of <h1, h2> and D: 

– can be written as an expectation over examples:

Sample Complexity - Uniform convergence bounds

Finite Hypothesis Spaces, Doubly Realizable Case

• Define CD,() = {h in C : errunl(h) < }.

Theorem

• Bound the # of labeled examples as a measure of the helpfulness of 

D with respect to 
– a helpful distribution is one in which CD,() is small
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Example

• Every variable is a positive indicator or negative 
indicator.  No example has both kinds.

– Bad distribution: uniform over unit-vectors {𝑒𝑖}.

– Good distribution:

– Algorithm: create graph on variables.  Put an edge between 
two variables if any example has both of them.

– Small number of connected components.

– Both classes have good “expansion”.

More Generally

• Want algorithm that runs in poly time using samples 
poly in respective bounds.

• E.g., can think of:

– ln|C| as # bits to describe target without knowing D, 

– ln|CD,()| as number of bits to describe target knowing 
a good approx to D, 

under assumption that target has low unlabeled error rate.

• Can get analogous sample-complexity bounds when 
target is not perfectly compatible.
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Infinite hypothesis spaces / VC-dimension

Infinite Hypothesis Spaces

Assume (h,x) in {0,1} and (C) = {h : h in C} where h(x) = (h,x).

Two issues:

1. If we want uniform convergence of unlabeled error rates 
(all ℎ ∈ 𝐶 have ෞ𝑒𝑟𝑟𝑢𝑛𝑙 ℎ − 𝑒𝑟𝑟𝑢𝑛𝑙 ℎ ≤ 𝜖) then we need 
unlabeled sample size to be large as a function of VC-
dimension of 𝜒 𝐶 .

2. For “size” of highly-compatible set, the max number of 
ways of splitting m points is not a good measure.   Instead:

C[m,D]: expected # of splits of m points from D with 

concepts in C.

Infinite hypothesis spaces / VC-dimension

Infinite Hypothesis Spaces

Assume (h,x) in {0,1} and (C) = {h : h in C} where h(x) = (h,x).

C[m,D] - expected # of splits of m points from D with concepts in C.
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-Cover-based bounds
• For algorithms that behave in a specific way: 

– first use the unlabeled data to choose a 
representative set of compatible hypotheses

– then use the labeled sample to choose among these
Theorem

• Can result in much better bound than uniform convergence.

-Cover-based bounds
• For algorithms that behave in a specific way: 

– first use the unlabeled data to choose a 
representative set of compatible hypotheses

– then use the labeled sample to choose among these

E.g., in case of co-training linear separators with 
independence assumption:
– -cover of compatible set  = {0, 1, c*, ¬c*}

E.g., Transductive SVM when data is in two blobs.

+

+

_

_
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Ways unlabeled data can help in this model

• If the target is highly compatible with D and have enough 
unlabeled data to estimate  over all h ∈ C, then can reduce 
the search space (from C down to just those h ∈ C whose 
estimated unlabeled error rate is low).

• By providing an estimate of D, unlabeled data can allow a 
more refined distribution-specific notion of hypothesis 
space size (such as the size of the smallest -cover).

• If D is nice so that the set of compatible h ∈ C has a small 
-cover and the elements of the cover are far apart, then 
can learn from even fewer labeled examples than the 1/
needed just to verify a good hypothesis.
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