
TTIC 31010 / CMSC 37000 Algorithms, Winter Quarter 2019

Homework # 5 Presentations: March 11 – 13, 2019

This is an oral-presentation assignment. You should work in groups of three. At some point
before midnight on Sunday March 10, your group should sign up for a 1-hour time slot on
the signup sheet by following the instructions on the course home page.

The Professor/TA/Grader reserves the right to select which group member presents which
problem. You are allowed to bring in notes to help you (e.g., a writeup of your solutions).

You are not required to hand anything in at your presentation, but you may if you choose.

Problems:

1. Randomized rounding. In the Set-Cover problem we are given n points {1, 2, . . . , n}
and m subsets of these points S1, S2, . . . , Sm. Our goal is to find the smallest number
of subsets needed to cover all the points. In the linear-programming relaxation of the
problem, we assign variables xi to each set, and ask to minimize

∑
i xi subject to the

constraints:

• for all i we have 0 ≤ xi ≤ 1, (each set chosen at most once)

• for all j we have
∑

{i:j∈Si}
xi ≥ 1. (each point is “covered”)

Note that if we added the requirement that xi ∈ {0, 1} rather than just requiring
xi ∈ [0, 1], then this would be identical to the set-cover problem.

Now, suppose we solve the linear-programming relaxation, yielding a solution with∑
i xi = OPTLP . Recall that OPTLP ≤ OPTSC where OPTSC is the number of sets

needed to solve the original (integral) problem.

(a) Recall that in the vertex cover problem we rounded the fractional solution to
an integral solution by choosing all vertices i such that xi ≥ 1/2, yielding a 2-
approximation. Show that this type of approach (even replacing the “1/2” with
any other number) cannot provide a o(n)-approximation for set-cover. Specifically,
give an example with n points and n sets such that the optimal LP solution has
xi = 1

n−1 for all i, and yet OPTSC = 2. This means that if we “round” the
fractional solution by taking all sets Si for xi ≥ v then either we don’t get a
legal solution (if we use v ≥ 1

n−1) or we get a solution that uses n sets (if we use

v ≤ 1
n−1), which is a factor of n/2 larger than OPTSC .

(b) On the other hand, we can get an O(log n) approximation by using a method
called “randomized rounding”. Specifically, let pi = xi/OPTLP so that

∑
i pi = 1.

Now, pick (2 lnn)OPTLP ≤ (2 lnn)OPTSC sets independently at random from
the probability distribution (p1, p2, . . . , pm).

Prove that this has probability at least 1− 1/n of covering all the points.

A helpful fact to recall is that (1− 1/k)k ≤ 1/e for all k ≥ 1.
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2. TSP approximation. Given a weighted undirected graph G, a traveling salesman
tour for G is the shortest tour that starts at some node, visits all the vertices of G, and
then returns to the start. We will allow the tour to visit vertices multiple times (so,
our goal is the shortest cycle, not the shortest simple cycle). This version of the TSP
that allows vertices to be visited multiple times is sometimes called the metric TSP
problem, because we can think of there being an implicit complete graph H defined
over the nodes of G, where the length of edge (u, v) in H is the length of the shortest
path between u and v in G. (By construction, edge lengths in H satisfy the triangle
inequality, so H is a metric. We’re assuming that all edge weights in G are positive.)

(a) Briefly: show why we can get a factor of 2 approximation to the TSP by finding
a minimum spanning tree T for H and then performing a depth-first traversal of
T .

(b) The minimum spanning tree T must have an even number of nodes of odd degree
(only considering the edges in T ). In fact, any (undirected) graph must have an
even number of nodes of odd degree. Why?

(c) Let M be a minimum-cost perfect matching (in H) between the nodes of odd
degree in T . I.e., if there are 2k nodes of odd degree in T , then M will consist of
k edges in H, no two of which share an endpoint. Prove that the total length of
edges in M is at most one-half the length of the optimal TSP tour.

(d) It turns out that every connected graph in which all nodes have even degree must
have an Euler tour: a tour that traverses each edge exactly once (you don’t need to
prove this). Moreover there is an efficient algorithm to find such tours when they
exist (you don’t need to prove this either). Finally, there are efficient algorithms
to solve for minimum-cost perfect matchings (you don’t need to prove this either).
Argue how you can combine all this together, along with your analysis above, to
get a 1.5 approximation to the TSP.

3. Skiing games. Consider the rent-or-buy problem in the simple case that the cost to
buy skis is twice the rental cost. The optimal deterministic algorithm (as discussed in
class) is: “rent the first time, buy the second time” for a competitive ratio of 3/2.

For a randomized algorithm, the definition of competitive ratio is the worst case, over
all possible scenarios, of the ratio of our expected cost under that scenario to the optimal
cost for that scenario. (Scenario = how many times we go skiing.) Equivalently, think
of a matrix game with a row for each deterministic strategy, a column for each possible
scenario, and with entry Mij equal to cost of strategy i in scenario j, divided by the
optimal cost for scenario j. The competitive ratio of a randomized algorithm A is then
the minimax value of A for this game, and the optimal randomized algorithm is the
minimax optimal strategy for this game.

(a) This game, annoyingly, has an infinite number of columns and an infinite number
of rows. Specifically, column j (for j = 1, 2, 3, . . .) is the scenario in which we ski
j times, and row i (for i = 1, 2, 3, . . .) is the strategy “rent the first i − 1 times
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you ski and buy skis the ith time” (so i = 0 means “buy right away”). In fact,
let’s add one more column, called “column ∞” for the scenario we ski forever.

Argue that without loss of generality, we can assume the adversary chooses only
column j = 1 or j =∞. Formally, argue that for any j > 1 we have Mij ≤ Mi∞
for all i. This means that an algorithm achieving competitive ratio v in a world
with only those two scenarios possible (ski once or ski infinitely often) will achieve
competitive ratio v over the whole range of scenarios.

(b) Now that we have reduced the game to having just two columns, argue that the
minimax-optimal strategy can put probability 0 on all rows except for i = 1 and
i = 2. Formally, argue that for any i > 2 we have Mij ≥M2j for all j.

(c) Finally, write down and solve the 2-by-2 game that results. What randomized
strategy has the best competitive ratio and what is its ratio?
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