
TTIC 31010 / CMSC 37000 Algorithms, Winter Quarter 2019

Homework # 3 Due: February 14, 2019

Homeworks due in class on the due date. Please put your name on each page of your handin
just in case pages get separated.

Lateness policy: up to 24 hours late: 10 points off. 24-48 hours late: 20 points off. More
than 48 hours late: 60 points off (at this point, solutions will be posted - and you may look
at them if you wish, but your answers should be in your own words).

Written homeworks are to be done individually. Group work is only for the oral-presentation
assignments. If you have questions, please contact the course staff.

Please do not post questions or solutions on websites such as coursehero etc.

Problems: (Hint: all involve network flow)

(30 pts) 1. Graduation. The University of Bureaucracy has n courses. In order to graduate, a
student must satisfy several requirements. Each requirement is of the form “you must
take at least ki courses from subset Si”. The problem is to determine whether or not
a given student can graduate. The hard part is that any given course cannot be used
towards satisfying multiple requirements. For example if one requirement states that
you must take at least two courses from {A,B,C}, and a second requirement states
that you must take at least two courses from {C,D,E}, then a student who had taken
just {B,C,D} would not yet be able to graduate.

Your job is to give a polynomial-time algorithm for the following problem. Given a
list of m requirements, where requirement i is of the form “you must take at least ki
courses from set Si”, and given a list L of courses taken by some student, determine if
that student can graduate. Prove that your algorithm is correct; that is, it states that
a student can graduate if and only if the student indeed can graduate.

(35 pts) 2. Fair cooking. n students share a house together. Each evening i, some subset Si of
the students gather for dinner (the remaining n−|Si| students are still in the lab), and
one of the students in Si is selected as the cook for that evening. The students want
to select the cook for each evening in such a way that nobody has to cook much more
than their “fair share”. Specifically, the fairness criterion is the following: Say that
person p is in some k of the sets, which have sizes n1, n2, . . . , nk, respectively. Person
p should really have to cook 1

n1
+ 1

n2
+ · · · + 1

nk
times, because this is the amount of

resource that this person effectively uses. Of course this number may not be an integer,
so let’s round it up to an integer. The fairness criterion is simply that person p should
have to cook no more than this many times.

For example, say that on day 1, Alice and Bob gather for dinner, and on day 2, Alice,
Carl, and Dilbert gather for dinner. Alice’s fair cost would be d1/2 + 1/3e = 1. So
Alice cooking both days would not be fair. Any solution except that one is fair.

1

(a) Prove that there always exists a fair solution. Specifically, given sets S1, S2, . . . , Sm,
there always exists a selection of cooks for each day that satisfies the above fairness
criterion.

(b) Give a polynomial-time algorithm for computing a fair solution from the sets
S1, . . . , Sm.

(35 pts) 3. Degree sequences. You are the chief engineer for Graphs-R-Us, a company that
makes graphs to meet all sorts of specifications.

(a) A client comes in and says he needs a 4-node directed graph in which the nodes
have the following in-degrees and out-degrees:

d1,in = 0, d2,in = 1, d3,in = 2, d4,in = 3
d1,out = 2, d2,out = 2, d3,out = 1, d4,out = 1

Is there a directed graph, with no multi-edges or self loops, that meets this spec-
ification? If so, what is it?

(b) What about a 3-node graph (again with no multi-edges or self loops) with these
in-degrees and out-degrees?

d1,in = 2, d2,in = 2, d3,in = 1
d1,out = 2, d2,out = 2, d3,out = 1

(c) This type of specification, in which the in-degrees and out-degrees of each node are
given, is called a degree sequence. The question above is asking whether a given
degree sequence is realizable — that is, whether there exists a directed graph
having those degrees.

Find an efficient algorithm that, given a degree sequence, will determine whether
this sequence is realizable, and if so will produce a directed graph with those
degrees. The graph should not have any self-loops, and should not have any
multi-edges (i.e., for each directed pair (i, j) there can be at most one edge from
i to j, though it is fine if there is also an edge from j to i). Hint: as stated at the
top of the assignment, think network flow.

2

