
TTIC 31010 / CMSC 37000 Algorithms, Winter Quarter 2019

Homework # 2 Presentations: Jan 30 – Feb 1, 2019

This is an oral-presentation assignment. You should work in groups of three. At some point
before midnight on Sunday January 27, your group should sign up for a 1-hour time slot on
the signup sheet by following the instructions on the course home page.

The Professor/TA/Grader reserves the right to select which group member presents which
problem. You are allowed to bring in notes to help you (e.g., a writeup of your solutions).

You are not required to hand anything in at your presentation, but you may if you choose.

Problems:

1. Widest paths

Big-Trucks-R-Us wants to find the widest path from its warehouse to every other lo-
cation in the city. Specifically, assume you have a graph G, a source node s in G, and
that every edge e in G has a non-negative “width” w(e). Define the width of a path
to be the minimum width of any edge on that path. For example if a path has three
edges of lengths 3, 2, and 4, respectively, then this path has width 2. The widest path
from s to some other node t in G is the path from s to t whose width is largest. For
example, if the graph were a 4-cycle with edges of width 1,3,2,4 around the cycle, then
the widest path between any two opposite corners would have width 2.

Give an efficient greedy algorithm for finding the widest path from s to every other
node in the graph, and argue why your algorithm is correct. Hint: modify Dijkstra’s
algorithm.

2. Boruvka’s MST Algorithm. Boruvka’s MST algorithm (from 1926) is a bit like a
distributed version of Kruskal’s algorithm. We begin by having each vertex mark the
shortest edge incident to it. (For instance, if the graph were a 4-cycle with edges of
lengths 1, 3, 2, and 4 around the cycle, then two vertices would mark the “1” edge
and the other two vertices will mark the “2” edge.) For the sake of simplicity, assume
that all edge lengths are distinct so we don’t have to worry about how to resolve ties,
and so that the MST is unique. This creates a forest F of marked edges. (Convince
yourself why there won’t be any cycles!) In the next step, each tree in F marks the
shortest edge incident to it (the shortest edge having one endpoint in the tree and one
endpoint not in the tree), creating a new forest F ′. This process repeats until we have
only one tree.

(a) Show correctness of this algorithm by arguing that the set of edges in the current
forest is always contained in the MST.

(b) Show how you can run each iteration of the algorithm in O(m) time with just
a couple runs of Depth-First-Search and no fancy data structures (heaps, union-
find). Remember, this algorithm was from 1926!

1



(c) Prove an upper bound of O(m log n) on the running time of this algorithm.

3. Spring Break.

You and your friends decide to go on a road trip to New Orleans for Spring Break. To
plan the trip, you have laid out a map of the U.S., and marked all the places you think
might be interesting to visit along the way. However, the requirements are:

(a) Each stop on the trip must be strictly closer to New Orleans than the previous
stop.

(b) The total length of the trip can be no longer than D.

You and your friends want to visit the most interesting places subject to these condi-
tions. As a first step, you create a directed graph with n nodes (one for each location
of interest) and an edge from i to j if there is a road from i to j and j is closer to New
Orleans than i. Let dij be the length of edge (i, j) in this graph.

Give an O(mn)-time algorithm to solve your optimization problem. Specifically, given
a directed acyclic graph (DAG) G with n nodes, m edges and with lengths on the
edges, and given a start node s, a destination node t, and a distance bound D, your
algorithm should find the path in G from s to t that visits the most intermediate nodes,
subject to having total length ≤ D.

(Note that in general graphs, this problem is NP-complete: in particular, a solution to
this problem would allow one to solve the traveling salesman problem. However, the
case that G is a DAG is much easier.)
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