
TTIC 31260 - Algorithmic Game Theory (Winter 2026)

Homework # 1 Solutions

Exercises:

1. Go with your strengths? Recall that in the penalty-shot game the shooter can
shoot left or shoot right, and the goalie can dive left or dive right. If the goalie guesses
correctly then the shot is blocked, else the ball goes in and it is a goal. Now, suppose
the shooter is wildly inaccurate on the left, so that even if the goalie dives right, the
ball still has only a 25% chance of going in. I.e., the payoff matrix R for the shooter
(the row player) looks like:

Shooter

Goalie
left right

left 0 1/4
right 1 0

(The payoff matrix C for the goalie equals −R).

(a) What is the minimax optimal strategy for the shooter, and what is the minimax
optimal value?

Solution: Say p is the probability on left and 1 − p is the probability on right. Then
the shooter gets payoff 1− p if the goalie dives left and p/4 if the goalie dives right.
Since one is decreasing with p and one is increasing with p, this means the minimum
is maximized when the two are equal. This solves to p = 4/5. The minimax optimal
value is 1/5.

(b) Is there anything perhaps counterintuitive about how weakening the shooter on
the left affected its minimax optimal strategy?

You’d think the shooter might want to go with its strength, but in fact it’s the
opposite, increasing probability on its weakness.

(c) What is the minimax optimal strategy for the goalie?

By similar reasoning, this solves to diving left with probability 1/5 and diving right
with probability 4/5.

2. Exchangability. Suppose that (p, q) and (p′, q′) are both Nash equilibria for some
game given by payoff matrices (R,C).

(a) Must (p, q′) be a Nash equilibrium? If so, give a proof; if not, give a counterex-
ample.

Solution: no. E.g., consider the walking-on-the-sidewalk game. LL is an equilibrium
and RR is an equilibrium, but LR is not.



(b) Suppose the game is zero-sum (C = −R). Must (p, q′) be a Nash equilibrium? If
so, give a proof; if not, give a counterexample.

Solution: yes. Since it is zero-sum, we know p and p′ are both minimax optimal
strategies for the Row player, guaranteeing expected payoff at least the value v of the
game no matter what the Column player plays, and q and q′ are both minimax optimal
for the Column player, guaranteeing expected payoff at least −v no matter what the
Row player plays. Therefore, under (p, q′) the row player has expected gain exactly v
and neither player can perform better by deviating, so it is a Nash equilibrium.

3. Game-theoretic RWM (multiplicative weights) analysis. In class we described
the RWM algorithm in the context of predicting from expert advice, and briefly
sketched how the analysis extended to the game-theoretic setting where the algorithm
is selecting an action rather than combining predictions. Here we want you to go ahead
and do that analysis.

Specifically, assume you have N action choices (rows in a matrix game). The algorithm
maintains a weight wi for each row i (initialized to wi = 1 ∀i) and defines probability
distribution pi = wi/W where W =

∑
iwi. To make this a little different from the

discussion in class, let’s assume that payoffs are gains in the range [0, 1] and that if
action i receives a gain of gi then the algorithm updates wi using

wi ← wi(1 + εgi),

where 0 < ε ≤ 1 is an input to the algorithm.

Let Gi =
∑
t g

t
i denote the cumulative gain of action i over all time steps t so far

(superscript t denotes the time-step), and let Qi =
∑
t(g

t
i)

2 ≤ Gi. Let GALG denote
the expected cumulative gain of the above algorithm. Prove that

GALG ≥ max
i

[Gi − εQi/2− (lnN)/ε] ≥ max
i

[Gi(1− ε/2)− (lnN)/ε] .

Feel free to look at the proof of the closely-related Theorem 4.6 in the book if you like.
Also you will want to use the fact that for x ∈ [0, 1] we have x− x2/2 ≤ ln(1 + x) ≤ x.

Solution: We have:

W t+1 = W t + ε
∑
i

wtig
t
i = W t + εW t

∑
t

ptig
t
i = W t(1 + εgtALG)

where gtALG is the expected gain of the algorithm at time t. Chaining together and using
the fact that W 0 = N we get W T = N

∏
t(1 + εgtALG). Taking logs,

ln(W T ) = ln(N) +
∑
t

ln(1 + εgtALG) ≤ ln(N) + εGALG.

For the lower bound, for any expert i we have:

ln(W T ) ≥ ln(wTi ) =
∑
t

ln(1 + εgti) ≥
∑
t

εgti −
∑
t

ε2(gti)
2/2 = εGi − ε2Qi/2.
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Putting these together and dividing by ε we have:

GALG ≥ Gi − εQi/2− (lnN)/ε ≥ Gi(1− ε/2)− (lnN)/ε

as desired.

Problems:

4. On approximate Nash equilibria. Consider a two-player n-by-n general-sum game.
Recall that in a Nash equilibrium (p, q), for each i s.t. pi > 0 we have eTi Rq =
maxi′ e

T
i′Rq and similarly for each j s.t. qj > 0 we have pTCej = maxj′ p

TCej′ .

Now, assume we have a game in which all payoffs are in the range [0, 1]. Define a pair
of distributions (p, q) to be an ε-Nash equilibrium if each player has at most ε incentive
to deviate. Even more stringently, define a pair of distributions (p, q) to be a well-
supported ε-Nash equilibrium if each row i with pi > 0 satisfies eTi Rq ≥ maxi′ e

T
i′Rq− ε

and each row j with qj > 0 satisfies pTCej ≥ maxj′ p
TCej′ − ε.1

Using the fact that Nash equilibria must exist, show that there must exist an ε-Nash
equilibrium (in fact, a well-supported ε-Nash) in which each player has positive prob-
ability on at most O( 1

ε2
log n) actions (rows or columns).

Hint: you will want somewhere to use Hoeffding’s inequality, which says that if X =
1
m

∑m
i=1Xi where the Xi are independent [0, 1]-valued random variables, then

Pr[|X − E[X]| > ε] ≤ 2e−2mε
2

.

Note: this fact yields an nO( 1
ε2

logn)-time algorithm for finding an ε-Nash equilibrium.
No PTAS (algorithm running in time polynomial in n for any fixed ε > 0) is known,
however.

Solution: Consider some Nash equilibrium (p, q). Let S be a (multi-)set of k rows selected
iid from p, and let T be a multi-set of k rows selected iid from q. Let US denote the uniform
distribution over S and let UT denote the uniform distribution over T . The claim is that
k = O( 1

ε2
log n) is sufficient so that with high probability, the pair (US, UT ) is an ε-Nash

equilibrium (so such a pair must exist). In particular, by Hoeffding bounds, this value of
k is sufficient so that with high probability, for every column c, its average payoff over the
rows in S is within ±ε/2 of its expected payoff with respect to the distribution p. Similarly,
with high probability, for every row r, its average payoff over the columns in T is within
±ε/2 of its expected payoff with respect to the distribution q. We can set the constant in
the big-Oh such that the failure probability of any given row or column is o(1/n) so the
overall probability of failure is o(1). So long as both conditions hold, this implies that the
pair (US, UT ) has the property that each player has at most ε incentive to deviate.

1So the difference is that in an ε-Nash equilibrium, players can put a small amount of probability on very
bad actions, whereas in a well-supported ε-Nash they cannot.
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5. Tracking a moving target. Here is a variation on the deterministic Weighted-
Majority algorithm, designed to make it more adaptive.

(a) Each expert begins with weight 1 (as before).

(b) We predict the result of a weighted-majority vote of the experts (as before).

(c) If an expert makes a mistake, we penalize it by dividing its weight by 2, but only
if its weight was at least 1/4 of the average weight of experts.

Prove that in any contiguous block of trials (e.g., the 51st example through the 77th
example), the number of mistakes made by the algorithm is at most O(m + logN),
where m is the number of mistakes made by the best expert in that block, and N is
the total number of experts.

Solution: Let Winit be the total weight at the beginning of the interval and Wfinal be the
total weight at the end of the interval.

First, notice that all weights are at least 1/8 of the average. We can see this by induction:
the average never increases, so the statement holds for weights that were not lowered in
the last round. Also, if a weight was lowered, then it must have been at least 1/4 of the
old average, so it is now at least 1/8 of the old average which is at least 1/8 of the new
average.

This means that the weight of the best expert at beginning of the interval is at least
Winit/(8n), and therefore by end of the interval it is at least (1/2)mWinit/(8n).

Also, on each mistake, at most W/4 of the total weight is fixed. So at least (W/2−W/4) =
W/4 gets cut in half. In other words, W/8 is removed from the total weight. This means
Wfinal < Winit(7/8)M .

The bound results from solving (1/2)mWinit/(8n) ≤ Winit(7/8)M .
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