
Gaussian Process Classification for
Segmenting and Annotating Sequences

Yasemin Altun altun@cs.brown.edu

Department of Computer Science, Brown University, Providence, RI 02912 USA

Thomas Hofmann th@cs.brown.edu

Department of Computer Science, Brown University, Providence, RI 02912 USA
Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany

Alexander J. Smola Alex.Smola@anu.edu.au

Machine Learning Group, RSISE , Australian National University, Canberra, ACT 0200, Australia

Abstract

Many real-world classification tasks involve
the prediction of multiple, inter-dependent
class labels. A prototypical case of this sort
deals with prediction of a sequence of la-
bels for a sequence of observations. Such
problems arise naturally in the context of
annotating and segmenting observation se-
quences. This paper generalizes Gaussian
Process classification to predict multiple la-
bels by taking dependencies between neigh-
boring labels into account. Our approach
is motivated by the desire to retain rigor-
ous probabilistic semantics, while overcom-
ing limitations of parametric methods like
Conditional Random Fields, which exhibit
conceptual and computational difficulties in
high-dimensional input spaces. Experiments
on named entity recognition and pitch ac-
cent prediction tasks demonstrate the com-
petitiveness of our approach.

1. Introduction

Multiclass classification refers to the problem of as-
signing class labels to instances where labels belong
to some finite set of elements. Often, however, the
instances to be labeled do not occur in isolation, but
rather in observation sequences. One is then interested
in predicting the joint label configuration, i.e. the se-
quence of labels corresponding to a sequence of ob-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

servations, using models that take possible interde-
pendencies between label variables into account. This
scenario subsumes problems of sequence segmentation
and annotation, which are ubiquitous in areas such as
natural language processing, speech recognition, and
computational biology.

The most common approach to sequence labeling is
based on Hidden Markov Models (HMMs), which de-
fine a generative probabilistic model for labeled obser-
vation sequences. In recent years, the state-of-the-art
method for sequence learning is Conditional Random
Fields (CRFs) introduced by Lafferty et al. (Lafferty
et al., 2001). In most general terms, CRFs define a
conditional model over label sequences given an ob-
servation sequence in terms of an exponential family;
they are thus a natural generalization of logistic re-
gression to the problem of label sequence prediction.
Other related work on this subject includes Maximum
Entropy Markov models (McCallum et al., 2000) and
the Markovian model of (Punyakanok & Roth, 2000).

There have also been attempts to extend other dis-
criminative methods such as AdaBoost (Altun et al.,
2003a), perceptron learning (Collins, 2002), and Sup-
port Vector Machines (SVMs) (Altun et al., 2003b;
Taskar et al., 2004) to the label sequence learning prob-
lem. The latter have experimentally compared favor-
ably to other discriminative methods, including CRFs.
Moreover, they have the conceptual advantage of be-
ing compatible with implicit data representations via
kernel functions.

In this paper, we investigate the use of Gaussian
Process (GP) classification (Gibbs & MacKay, 2000;
Williams & Barber, 1998) for label sequences. The
main motivation for pursuing this direction is to com-

bine the best of both worlds from CRFs and SVMs.
More specifically, we would like to preserve the main
strength of CRFs, which we see in its rigorous prob-
abilistic semantics. There are two important advan-
tages of a probabilistic model. First, it is very intuitive
to incorporate prior knowledge within a probabilistic
framework. Second, in addition to predicting the best
labels, one can compute posterior label probabilities
and thus derive confidence scores for predictions. This
is a valuable property in particular for applications
requiring a cascaded architecture of classifiers. Con-
fidence scores can be propagated to subsequent pro-
cessing stages or used to abstain on certain predic-
tions. The other design goal is the ability to use kernel
functions in order to construct and learn in Reproduc-
ing Kernel Hilbert Spaces (RKHS), thereby overcom-
ing the limitations of (finite-dimensional) parametric
statistical models.

A second, independent objective of our work is to
gain clarification with respect to two aspects on which
CRFs and the SVM-based methods differ, the first as-
pect being the loss function (logistic loss vs. hinge
loss), and the second aspect being the mechanism
used for constructing the hypothesis space (parametric
vs. RKHS).

GPs are non-parametric tools to perform Bayesian in-
ference, which – like SVMs – make use of the kernel

trick to work in high (possibly infinite) dimensional
spaces. Like other discriminative methods, GPs pre-
dict single variables and do not take into account any
dependency structure in case of multiple label predic-
tions. Our goal is to generalize GPs to predict label
sequences. While computationally demanding, recent
progress on sparse approximation methods for GPs,
e.g. (Csat’o & Opper, 2002; Smola & Bartlett, 2000;
Seeger et al., 2003; Zhu & Hastie, 2001), suggest that
scalable GP label sequence learning may be an achiev-
able goal. Exploiting the compositionality of the ker-
nel function, we derive a gradient-based optimization
method for GP sequence classification. Moreover, we
present a column generation algorithm that performs
a sparse approximation of the solution.

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce Gaussian Process classification.
Then, we present our formulation of Gaussian Pro-
cess sequence classification (GPSC) in Section 3 and
describe the proposed optimization algorithms in Sec-
tion 4. Finally, we report some experimental results
using real-world data for named entity classification
and pitch accent prediction in Section 5.

2. Gaussian Process Classification

In supervised classification, we are given a training set
of n labeled instances or observations (xi, yi) with yi ∈
{1, . . . , m}, drawn i.i.d. from an unknown, but fixed,
joint probability distribution p(x, y). We denote the
training observations and labels by X = (x1, . . . ,xn)
and y = (y1, . . . , yn), respectively.

GP classification constructs a two-stage model for the
conditional probability distribution p(y|x) by intro-
ducing an intermediate, unobserved stochastic process
u ≡ (u(x, y)) where u(x, y) can be considered a com-

patibility measure of an observation x and a label y.
Given an instantiation of the stochastic process, we
assume that the conditional probability p(y|x,u) only
depends on the values of u at the input x via a multi-
nomial response model, i.e.

p(y|x,u) = p(y|u(x, ·)) =
exp(u(x, y))

∑m

y′=1 exp(u(x, y′))
(1)

It is furthermore assumed that the stochastic process u

is a zero mean Gaussian process with covariance func-
tion C, typically a kernel function. An additional as-
sumption typically made in multiclass GP classifica-
tion is that the processes u(·, y) and u(·, y′) are uncor-
related for y 6= y′ (Williams & Barber, 1998).

For notational convenience, we will identify u with the
relevant restriction of u to the training patterns X and
represent it as a n×m matrix. For simplicity we will
(in slight abuse of notation) also think of u as a vec-
tor with multi-index (i, y). Moreover we will denote
by K the kernel matrix with entries1 K(i,y),(j,y′) =
C((xi, y), (xj , y

′)). Notice that under the above as-
sumptions K has a block diagonal structure with
blocks K(y) = (Kij(y)), Kij(y) ≡ Cy(xi,xj), where
Cy is a class-specific covariance function.

Following a Bayesian approach, the prediction of a la-
bel for a new observation x is obtained by computing
the posterior probability distribution over labels and
selecting the label that has the highest probability:

p(y|X,y,x) =

∫

p(y|u(x, ·)) p(u|X,y) du (2)

Thus, one needs to integrate out all n · m latent
variables of u. Since this is in general intractable,
it is common to perform a saddle-point approxima-
tion of the integral around the optimal point esti-

1Here and below, we will make extensive use of multi-
indices. We will put parentheses around a comma-
separated list of indices to denote a multi-index and use
two comma-separated multi-indices to refer to matrix ele-
ments.

mate, which is the maximum a posterior (MAP) es-
timate: p(y|X,y,x) ≈ p(y|umap(x, ·)) where umap =
argmax

u
log p(u|X,y). Exploiting the conditional in-

dependence assumptions, the posterior of u can – up
to a multiplicative constant – be written as

p(u|X,y) ∝ p(u)

n
∏

i=1

p(yi|u(xi, ·)) (3)

Combining the GP prior over u and the conditional
model in (1) yields the more specific expression

log p(u|X,y) =

n
∑

i=1

[

u(xi, yi)− log
∑

y

exp(u(xi, y))

]

−
1

2
uT K−1u + const. (4)

The Representer Theorem (Kimeldorf & Wahba, 1971)
guarantees that the maximizer of (4) is of the form

umap(xi, y) =

n
∑

j=1

m
∑

y′=1

α(j,y′)K(i,y),(j,y′) (5)

with suitably chosen coefficients α. In the block diago-
nal case, K(i,y),(j,y′) = 0 for y 6= y′ and this reduces to
the simpler form umap(xi, y) =

∑n
j=1 α(j,y)Cy(xi,xj).

Using the representation in (5), we can rewrite the
optimization problem as an objective R parameter-
ized by α. Let e(i,y) be the (i, y)-th unit vector, then
αT Ke(i,y) =

∑

j,y′ α(j,y′)K(i,y),(j,y′) and the negative
of Eq. (4) can be written as follows:

R(α|X,y) = αT Kα−

n
∑

i=1

log p(yi|xi, α) (6)

= αT Kα−
n

∑

i=1

αT Ke(i,yi) +
n

∑

i=1

log
∑

y

exp(αT Ke(i,y))

A comparison between (6) and a similar multiclass
SVM formulation (Crammer & Singer, 2001; Weston
& Watkins, 1999) clarifies the connection between GP
classification and SVMs. Their difference lies primar-
ily in the utilized loss functions: logistic loss vs. hinge
loss. Because the hinge loss truncates values smaller
than ε to 0, it enforces sparseness in terms of the α

parameters. This is not the case for logistic regression
as well as other choices of loss functions.2

For non-linear link functions like the one induced by
Eq. (1), umap cannot be found analytically and one

2Several studies focused on finding sparse solutions of
Eq. (6) or optimization problems similar to Eq. (6) (Ben-
nett et al., 2002; Girosi, 1997; Smola & Schölkopf, 2000;
Zhu & Hastie, 2001).

has to resort to approximate solutions. Various ap-
proximation schemes have been studied to that ex-
tent: Laplace approximation (Williams & Barber,
1998; Williams & Seeger, 2000; Zhu & Hastie, 2001),
variational methods (Jaakkola & Jordan, 1996), mean
field approximations (Opper & Winther, 2000), and
expectation propagation (Minka, 2001; Seeger et al.,
2003). Performing these methods usually involves the
computation of the Hessian matrix as well as the in-
version of K, a nm×nm matrix, which is not tractable
for large data sets (of size n) and/or large label sets
(of size m). Several techniques have been proposed to
approximate K such that the inversion of the approx-
imating matrix is tractable (cf. (Schölkopf & Smola,
2002) for references on such methods). One can also
try to solve (6) using greedy optimization methods as
proposed in (Bennett et al., 2002).

3. GP Sequence Classification (GPSC)

3.1. Sequence Labeling and GPC

In sequence classification, our goal is to learn a dis-
criminant function for sequences, i.e. a mapping from
observation sequences X = (x1,x2, . . . ,xt, . . . ,xT) to
label sequences y = (y1, y2, . . . , yt, . . . , yT). There ex-
ists a label yt ∈ Σ = {1, . . . , r} for every observation
xt in the sequence. Thus, we have T multiclass classifi-
cation problems. Because of the sequence structure of
the labels (i.e. every label yt depends on its neighbor-
ing labels), one needs to solve these T classification
problems jointly. Then, the problem can be consid-
ered as a multiclass classification where for an obser-
vation sequence of length l, the possible label set Y is
of size m = rl.3 We call Σ label set of observations
or micro-label set, and Y the set of label sequences of
observation sequences or macro-label set.

We assume that a training set of n labeled sequences
Z ≡ {(Xi,yi)|i = 1, . . . , n} is available. Using the
notation introduced in the context of GP classification,
we define p(yi|u(Xi)) as in (1), treating every macro
label as a separate label in GP multiclass classification
and using the whole sequence Xi as the input.

3.2. Kernels for Labeled Sequences

The fundamental design decision is then the engineer-
ing of the kernel function k that determines the kernel
matrix K. Notice that the use of a block diagonal ker-
nel matrix is not an option in the current setting, since
it would prohibit generalizing across label sequences
that differ in as little as a single micro-label.

3For notational convenience we will assume that all
training sequences are of the same length l.

We define the kernel function for labeled sequences
with respect to the feature representation. Inspired
by HMMs, we use two types of features: Features that
capture the dependency of the micro-labels on the at-
tributes of the observations Φ(xs) and features that
capture the inter-dependency of micro-labels. As in
other discriminative methods, Φ(xs) can include over-
lapping attributes of xs as well as attributes of obser-
vations xt where t 6= s. Using stationarity, the inner
product between the feature vectors of two observation
sequences can be stated as: k = k1 + k2, where

k1((X,y), (X̄, ȳ))≡
∑

s,t

[[ys = ȳt]]〈Φ(xs), Φ(x̄t)〉 (7a)

k2((X,y), (X̄, ȳ))≡
∑

s,t

[[ys = ȳt∧ ys+1 = ȳt+1]] (7b)

k1 couples observations in both sequences that are
classified with the same micro-labels at respective po-
sitions. k2 simply counts the number of consecutive
label pairs both label sequences have in common (ir-
respective of the inputs). One can generalize (7) in
various ways, e.g. by using higher order terms between
micro-labels in both contributions, without posing ma-
jor conceptual challenges.

k is a linear kernel function for labeled sequences. This
can be generalized to non-linear kernel functions for
labeled sequences by replacing 〈Φ(xs), Φ(x̄t)〉 with a
standard kernel function defined over input patterns.

We can naively follow the same line of argumentation
as in the GPC case of Section 2, evoke the Representer
Theorem and ultimately arrive at the objective in (6).
Since we need it for subsequent derivations, we will
restate the objective here

R(α|Z) = αT Kα−

n
∑

i=1

αT Ke(i,yi)

+

n
∑

i=1

log
∑

y∈Y

exp
(

αT Ke(i,y)

)

(8)

Notice that in the third term, the sum ranges over
the macro-label set, Y , which grows exponentially in
the sequence length. Therefore, this view suffers from
the large cardinality of Y . In order to re-establish
tractability of this formulation, we use a trick simi-
lar to the one deployed in (Taskar et al., 2004) and
reparametrize the objective in terms of an equivalent
lower dimensional set of parameters. The crucial ob-
servation is that the definition of k in (7) is homo-
geneous (or stationary). Thus, the absolute positions
of patterns and labels in the sequence are irrelevant.
This observation can be exploited by re-arranging the
sums inside the kernel function with the outer sums,
i.e. the sums in the objective function.

3.3. Exploiting Kernel Structure

In order to carry out this reparameterization more for-
mally we proceed in two steps. The first step consists
of finding an appropriate low-dimensional summary of
α. In particular, we are looking for a parameteriza-
tion that does not scale with m = rl. The second step
consists of re-writing the objective function in terms
of these new parameters.

As we will prove subsequently, the following linear map
Λ extracts the information in α that is relevant for
solving (8):

γ ≡ Λα, Λ ∈ {0, 1}n·l·r
2
×n·m (9)

where

λ(j,t,σ,τ),(i,y) ≡ δij [[y
t = σ ∧ yt+1 = τ]] (10)

Notice that each variable λ(j,t,σ,τ),(i,y) encodes
whether the input sequence is the j-th training se-
quence and whether the label sequence y contains
micro-labels σ and τ at position t and t + 1, respec-
tively. Hence, γ(j,t,σ,τ) is simply the sum of all α(j,y)

over label sequences y that contain the στ -motif at
position t.

We define two reductions derived from γ via further
linear dimension reduction,

γ(1)≡ Pγ, with P(i,s,σ),(j,t,τ,ρ) = δijδstδστ , (11a)

γ(2)≡ Qγ, with Q(i,σ,ζ),(j,t,τ,ρ) = δijδστδζρ . (11b)

Intuitively, γ
(2)
(i,σ,τ) is the sum of all α(i,y) over ev-

ery position in the sequence y that contains στ -motif.

γ
(1)
i,s,σ , on the other hand, is the sum of all α(i,y) that

has σ micro-label at position s in macro-label y.

We can now show how to represent the kernel matrix
using the previously defined matrices Λ, P, Q and the
gram matrix G with G(i,s),(j,t) = g(xs

i ,x
t
j).

Proposition 1. With the definitions from above:

K = ΛT K′Λ, K′ ≡
(

PT HP + QT Q
)

where H = diag(G, . . . ,G).

Proof. By elementary comparison of coefficients.

We now have r2 parameters for every observation xs in
the training data (nlr2 parameters) and we can rewrite
the objective function in terms of these variables:

R(γ|X,y) = γT K′γ −
n

∑

i=1

γT K′Λe(i,yi)

+

n
∑

i=1

log
∑

y∈Y

exp
(

γT K′Λe(i,y)

)

(12)

3.4. GPSC and Other Label Sequence

Learning Methods

We now briefly point out the relationship between our
approach and the previous discriminative methods of
sequence learning, in particular, CRFs, HM-SVMs and
MMMs.

CRF is a natural generalization of logistic regression to
label sequence learning. The probability distribution
over label sequences given an observation sequence is
given in Eq. (1), where u(X,y) = 〈θ, Ψ(X,y)〉 is a
linear discriminative function over some feature repre-
sentation Ψ parameterized with θ. The objective func-
tion of CRFs is the minimization of the negative condi-
tional likelihood of training data. To avoid overfitting,
it is common to multiply the conditional likelihood by
a Gaussian with zero mean and diagonal covariance
matrix K, resulting in an additive term in log scale.

log p(θ|X,y) = −

n
∑

i=1

log p(yi|Xi, θ) + θT Kθ (13)

From a Bayesian point of view, CRFs assume a uni-
form prior p(u), if there is no regularization term.
When regularized, CRFs define a Gaussian distribu-
tion over a finite vector space θ. In GPSC, on the
other hand, the prior is defined as a Gaussian dis-
tribution over the function space of possibly infinite
dimension. Thus, GPSC generalizes CRFs by defin-
ing a more sophisticated prior on the discriminative
function u. This prior leads to the ability of using
kernel function in order to construct and learn over
Reproducing Kernel Hilbert Spaces. So, GPSC, a non-
parametric Bayesian inference tool for sequence label-
ing, can overcome the limitations of CRFs, parametric
(linear) statistical models. When the kernel that de-
fines the covariance matrix K in GPSC is linear, u in
both models become equivalent.

The difference between SVM and GP approaches to
sequence learning is the utilized loss function over the
training data, i.e. hinge loss vs. log loss. GPSC ob-
jective function parameterized with α (Eq. (8)) corre-
sponds to HM-SVMs where the number of parameters
scale exponentially with the length of sequences. The
objective function parameterized with γ (Eq. (12)) cor-
responds to MMMs, where the number of parameters
scale only linearly.

4. GPSC Optimization Algorithm

4.1. A Dense Algorithm

Using optimization methods described in Section 2 re-
quires the computation of the Hessian matrix. In se-

quence labeling, this corresponds to computing the ex-
pections of micro-labels within different cliques, which
is not tractable to compute exactly for large training
sets. In order to minimize R with respect to γ, we pro-
pose a 1st order exact optimization method, which we
call Dense Gaussian Process Sequence Classification
(DGPS).

It is well-known that the derivatives of the log partition
function with respect to γ is simply the expectation of
sufficient statistics:

∇γ



log
∑

y∈Y

exp
(

γT K′Λe(i,y)

)



=EY

[

Λe(i,Y)

]

(14)

where EY denotes an expectation with respect to the
conditional distribution of the label sequence y given
the observation sequence Xi. Then, the gradients of
R is trivially given by:

∇γR=2K′γ −

n
∑

i=1

K′Λe(i,yi) +

n
∑

i=1

K′EY

[

Λe(i,Y)

]

(15)

The remaining challenge is to come-up with an efficient
way to compute the expectations. First of all, let us
more explicitly examine these quantities:

EY [(Λe(i,Y))(j,t,σ,τ)]=δijEY

[

[[Y t =σ∧Y t+1 =τ]]
]

(16)

In order to compute the above expectations one can
once again exploit the structure of the kernel and is
left with the problem of computing probabilities for
every neighboring micro-label pair (σ, τ) at positions
(t, t + 1) for all training sequences Xi. The latter can
be accomplished by performing the forward-backward
algorithm over the training data using the transition
probability matrix T and the observation probability
matrices O(i), which are simply decompositions and
reshapings of K′:

γ̄(2)≡ Rγ(2), with R(σ,ζ),(i,τ,ρ) = δστδζρ (17a)

T≡ [γ̄(2)]r,r (17b)

O(i) = [γ(1)]n·l,rG(i,.),(.,.) (17c)

where [x]m,n denotes the reshaping operation of a vec-
tor x into an m ∗ n matrix, AI,J denotes the |I | ∗ |J |
sub-matrix of A and (.) denotes the set of all possible
indices.

A single optimization step of DGPS is described in
Algorithm 1. The complexity of one optimization step
is O(t2) dominated by the forward-backward algorithm

Algorithm 1 One optimization step of Dense Gaus-
sian Process Sequence Classification (DGPS)

Require: Training data (Xi,yi)i=1:n; Proposed pa-
rameter values γc

1: Initialize γ
(1)
c , γ

(2)
c (Eq. (11)).

2: Compute T wrt γ
(2)
c (Eq. (17a), Eq. (17b)).

3: for i = 1, . . . , n do

4: Compute O(i) wrt γ
(1)
c (Eq. (17c)).

5: Compute p(yi|Xi, γc) and
EY

[

[[Y t =σ∧Y t+1 =τ]]
]

for all t, σ, τ via

forward-backward algorithm using O(i) and T

6: end for

7: Compute ∇γR (Eq. (15)).

over all instances where t = nlr2. We propose to use
a quasi-Newton method for the optimization process.
Then, the overall complexity is given by O(ηt2) where
η < t2. The memory requirement is given by the size
of γ, O(t).

During inference, one can find the most likely label
sequence for an observation sequence X by performing
Viterbi decoding using the transition and observation
probability matrices described above.

4.2. A Sparse Algorithm

While the above method is attractive for small data
sets, the computation or the storage of K′ poses a
serious problem when the data set is large. Also, clas-
sification of a new observation involves evaluating the
covariance function at nl data points, which is more
than acceptable for many applications. Hence, as in
the case of standard Gaussian Process Classification
discussed in Section 2, one has to find a method for
sparse solutions in terms of the γ parameters to speed
up the training and prediction stages.

We propose a sparse greedy method, Sparse Gaussian
Process Sequence Classification (SGPS), that is simi-
lar to the method presented by (Bennett et al., 2002).

SGPS starts with an empty matrix K̂. At each iter-
ation, SGPS selects a training instance Xi and com-
putes the gradients of the parameters associated with
Xi, γ(i,.), to select the steepest descent direction(s)

of R over this subspace. Then K̂ is augmented with
these columns and SGPS performs optimization of the
current problem using a Quasi-Newton method. This
process is repeated until the gradients vanish (i.e. they
are smaller than a threshold value η) or a maximum
number of γ coordinates, p, are selected (i.e. some
sparseness level is achieved). Since the bottleneck of
this method is the computation of the expectations,

EY

[

[[Y t =σ∧Y t+1 =τ]]
]

, we pick the steepest d direc-
tions, once the expectations are computed.

One has two options to compute the optimal γ at every
iteration: by updating all of the γ parameters selected
until now, or alternatively, by updating only the pa-
rameters selected in the last iteration. We prefer the
latter because of its less expensive iterations. This ap-
proach is in the spirit of a boosting algorithm or the
cyclic coordinate optimization method.

Algorithm 2 Sparse Gaussian Process Sequence Clas-
sification (SGPS) algorithm.

Require: Training data (Xi,yi)i=1:n; Maximum
number of coordinates to be selected, p, p < nlr2;
Threshold value η for gradients

1: K← []
2: for i = 1, . . . , n do

3: Compute ∇γ(i,.)
R (Equation 15).

4: s← Steepest d directions of ∇γ(i,.)
R

5: K̂← [K̂;Kes]
6: Optimize R wrt s.
7: Return if ∇γ < η or p coordinates selected.
8: end for

SGPS is described in Algorithm 2. Its complexity is
O(p2t) where p is the maximum number of coordinates
allowed.

5. Experiments

5.1. Pitch Accent Prediction

Pitch Accent Prediction is the task of identifying more
prominent words in a sentence. The micro-label set is
of size 2, accented and not-accented. We used phonet-
ically hand-transcribed Switchboard corpus consisting
of 1824 sentences (13K words) (Greenberg et al., 1996).
We extracted probabilistic, acoustic and textual infor-
mation from the current, previous and next words for
every position in the training data. We used 1st order
Markov features to capture the dependencies between
neighboring labels.

We compared the performance of CRFs and HM-
SVMs with the GPSC dense and sparse methods ac-
cording to their test accuracy in 5-fold cross valida-
tion. CRFs were regularized and optimized using lim-
ited memory BFGS, a limited memory Quasi-Newton
optimization method. When performing experiments
on DGPS, we used polynomial kernels with different
degrees (denoted with DGPSX in Figure 1a where
X ∈ {1, 2, 3} is the degree of the polynomial kernel).
We used third order polynomial kernel in HM-SVMs
(denoted with SVM3 in Figure 1). As expected, CRFs

Test Accuracy
0 1 2 3 4 5 6 7 8

0.72

0.73

0.74

0.75

0.76

0.77

A
cc

ur
ac

y
Sparseness %

DGPS2

SGPS2

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

Threshold

Precision

Recall

Figure 1. Pitch Accent Prediction task results a) Test accuracy of Pitch Accent Prediction task over a window of size
3 using 5-fold cross validation. b) Test accuracy of Pitch Accent Prediction w.r.t. the sparseness of the solution. c)
Precision-Recall curves for different threshold probabilities to abstain.

and DGPS1 performed very similar. When 2nd or-
der features were incorporated implicitly using second
degree polynomial kernel (DGPS2), the performance
increased dramatically. Extracting 2nd order features
explicitly results in a 12 million dimensional feature
space, where CRFs slow down dramatically. We ob-
served that 3rd order features do not provide signifi-
cant improvement over DGPS2. HM-SVM3 performs
slightly worse than DGPS2.

To investigate how the sparsity of SGPS affects its per-
formance, we report the test accuracy with respect to
the sparseness of SGPS solution in Figure 1b. Sparse-
ness is measured by the percentage of the parameters
selected by SGPS. The straight line is the performance
of DGPS using second degree polynomial kernel. Us-
ing 1% of the parameters, SGPS achieves 75% accu-
racy (1.48% less than the accuracy of DGPS). When
7.8% of the parameters are selected, the accuracy is
76.18% which is not significantly different than the
performance of DGPS (76.48%). We observed that
these parameters were related to 6.2% of the obser-
vations along with 1.13 label pairs on average. Thus,
during inference one needs to evaluate the kernel func-
tion only at 6% of the observations which reduces the
inference time dramatically.

In order to experimentally verify how useful the pre-
dictive probabilities are as confidence scores, we forced
DGPS to abstain from predicting a label when the
probability of a micro-label is lower than a threshold
value. In Figure 1c, we plot precision-recall values
for different thresholds. We observed that the error
rate for DGPS decreased 8.54%, abstaining on 14.93%
of the test data. The improvement on the error rate
shows the validity of the probabilities generated by

DGPS.

5.2. Named Entity Recognition

Named Entity Recognition (NER), a subtask of In-
formation Extraction, is finding phrases containing
names in a sentences. The micro-label set consists
of the beginning and continuation of person, location,
organization and miscellaneous names and non-name.
We used a Spanish newswire corpus, which was pro-
vided for the Special Session of CoNLL 2002 on NER,
to randomly select 1000 sentences (21K words). We
used the word and its spelling properties of the cur-
rent, previous and next observations.

DGPS1 DGPS2 SGPS2 CRF CRF-B
Error 4.58 4.39 4.48 4.92 4.56

Table 1. Test error of NER over a window of size 3 using
5-fold cross validation.

The experimental setup was similar to pitch accent
prediction task. We compared the performance of
CRFs with and without the regularizer term (CRF-
R, CRF) with the GPSC dense and sparse methods.
Qualitatively, the behavior of the different optimiza-
tion methods is comparable to the pitch accent predic-
tion task. The results are summarized in Table 1. Sec-
ond degree polynomial DGPS outperformed the other
methods. We set the sparseness parameter of SGPS to
25%, i.e. p = 0.25nlr2, where r = 9 and nl = 21K on
average. SGPS with 25% sparseness achieves an accu-
racy that is only 0.1% below DGPS. We observed that
19% of the observations are selected along with 1.32
label pairs on average, which means that one needs to
compute only one fifth of the gram matrix.

We also tried a sparse algorithm that does not exploit
the kernel structure and optimizes Equation 8 to ob-
tain sparse solutions in terms of observation sequences
X and label sequence y, as opposed to SPGS, where
the sparse solution is in terms of observations and label
pairs. This method achieved 92.7% of accuracy, hence,
was clearly outperformed by all the other methods.

6. Conclusion and Future Work

We presented GPSC, a generalization of Gaussian Pro-
cess classification to label sequence learning problem.
This method combines the advantages of the rigor-
ous probabilistic semantics of CRFs and overcomes
the curse of dimensionality problem using kernels in
order to construct and learn over RKHS. The experi-
ments on named entity recognition show the compet-
itiveness and the experiments on pitch accent predic-
tion show the superiority of our approach in terms of
the achieved error rate. We also experimentally veri-
fied the usefulness of the probabilities obtained from
GPSC.

Acknowledgments

This work was supported by NSF-ITR grants IIS-0312401
and IIS-0085940. Thanks to Michelle Gregory for providing
us the pitch accent data and the valuable features.

References

Altun, Y., Hofmann, T., & Johnson, M. (2003a). Discrim-
inative learning for label sequences via boosting. Ad-
vances in Neural Information Processing Systems.

Altun, Y., Tsochantaridis, I., & Hofmann, T. (2003b). Hid-
den markov support vector machines. 20th International
Conference on Machine Learning.

Bennett, K., Momma, M., & Embrechts, J. (2002). Mark:
A boosting algorithm for heterogeneous kernel mod-
els. Proceedings of SIGKDD International Conference
on Knowledge Discovery and Data Mining.

Collins, M. (2002). Discriminative training methods for
Hidden Markov Models: Theory and experiments with
perceptron algorithms. Empirical Methods of Natural
Language Processing (EMNLP).

Crammer, K., & Singer, Y. (2001). On the algorithmic im-
plementation of multiclass kernel-based vector machines.
Journal of Machine Learning Research, 2.

Csat’o, L., & Opper, M. (2002). Sparse on-line Gaussian
Processes. Neural Computation, 14, 641–668.

Gibbs, M. N., & MacKay, D. J. C. (2000). Variational
Gaussian Process Classifiers. IEEE-NN, 11, 1458.

Girosi, F. (1997). An equivalence between sparse approxi-
mation and support vector machines (Technical Report
AIM-1606).

Greenberg, S., Ellis, D., & Hollenback, J. (1996). Insights
into spoken language gleaned from phonetic transcripti
on of the Switchboard corpus. ICSLP96.

Jaakkola, T. S., & Jordan, M. I. (1996). Computing upper
and lower bounds on likelihoods in intractable networks.
In Proc. of the Twelfth Conf. on UAI.

Kimeldorf, G., & Wahba, G. (1971). A correspondence
between Bayesian estimation and on stochastic processes
and smoothing by splines. Annals of Math. Stat., 41(2),
495–502.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional Random Fields: Probabilistic models for segment-
ing and labeling sequence data. Proc. 18th International
Conf. on Machine Learning.

McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum
Entropy Markov Models for Information Extraction and
Segmentation. Machine Learning: Proceedings of the
Seventeenth International Conference (ICML 2000).

Minka, T. (2001). A family of algorithms for approximate
Bayesian inference. PhD thesis, MIT Media Lab.

Opper, M., & Winther, O. (2000). Gaussian Processes for
classification: Mean-field algorithms. Neural Computa-
tion, 12, 2655–2684.

Punyakanok, V., & Roth, D. (2000). The use of classifiers
in sequential inference. Advances in Neural Information
Processing Systems.

Schölkopf, B., & Smola, A. J. (2002). Learning with ker-
nels. MIT Press.

Seeger, M., Lawrence, N. D., & Herbrich, R. (2003). Fast
sparse Gaussian Process methods: The informative vec-
tor machine. Advances in Neural Information Processing
Systems.

Smola, A. J., & Bartlett, P. L. (2000). Sparse greedy Gaus-
sian Process regression. Advances in Neural Information
Processing Systems.

Smola, A. J., & Schölkopf, B. (2000). Sparse greedy matrix
approximation for machine learning. Proc. 17th Inter-
national Conf. on Machine Learning.

Taskar, B., Guestrin, C., & Koller, D. (2004). Max-margin
markov networks. Advances in Neural Information Pro-
cessing Systems.

Weston, J., & Watkins, C. (1999). Support vector ma-
chines for multi-class pattern recognition. Proceedings
European Symposium on Artificial Neural Networks.

Williams, C. K. I., & Barber, D. (1998). Bayesian clas-
sification with Gaussian Processes. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20, 1342–
1351.

Williams, C. K. I., & Seeger, M. (2000). Using the nystrom
method to speed up kernel machines. Advances in Neural
Information Processing Systems.

Zhu, & Hastie, T. (2001). Kernel logistic regression and the
import vector machine. Advances in Neural Information
Processing Systems.

