Papers:

(Distributed Machine Learning)

Data-Dependent Convergence For Distributed Stochastic Optimization
Avleen S. Bijral, Anand D. Sarwate and Nathan Srebro
(coming soon)

Mini-Batch Primal and Dual Methods for SVMs (pdf)
Martin Takac, Avleen S. Bijral, Peter Richtarik and Nathan Srebro
In proceedings International Conference on Machine Learning (ICML) 2013.

On Doubly Stochastic Graph Optimization (pdf)
Avleen S Bijral and Nathan Srebro
In proceedings NIPS Workshop on Analyzing Networks and Learning with Graphs 2009.

(Semi Supervised Learning and Applications)

Semi-supervised Learning with Density Based Distances (pdf)
Avleen S Bijral, Nathan Ratliff and Nathan Srebro
In proceedings Uncertainty in Artificial Intelligence (UAI) 2011.


Traversable Path Identification in Unstructured Terrains: A Markov Random Walk Approach
(pdf)
Adam R Bates, Avleen S Bijral, Jane Mulligan and Greg Grudic
In proceedings IEEE Conference on Robotics and Automation (ICRA) 2009.


(Generative Models)

Mixture of Watson Distributions: A Generative Model for Hyperspherical Embeddings (pdf)
Avleen S Bijral, Markus Breitenbach and Greg Grudic
In proceedings Artificial Intelligence and Statistics (AISTATS) 2007.

Distributed Mixture Density Estimation (pdf)
Avleen S Bijral


(Miscellaneous)

Expected Lengths of k-shortest Paths in Lp-weighted Graphs (pdf)
Avleen S Bijral

Graduate Coursework:

Discrete Mathematics, Stochastic Processes, Algorithms, Real and Functional Analysis, Optimization,
Mathematical Statistics, Algebraic Statistics and Machine Learning