Mathematical Toolkit Autumn 2023

Lecture 5: October 10, 2023

Lecturer: Madhur Tulsiani

1 Inner-products and Adjoints

Definition 1.1 *Let* V, W *be inner product spaces over the same field* \mathbb{F} *and let* $\varphi : V \to W$ *be a linear transformation. A transformation* $\varphi^* : W \to V$ *is called an* adjoint *of* φ *if*

$$\langle w, \varphi(v) \rangle = \langle \varphi^*(w), v \rangle \quad \forall v \in V, w \in W.$$

Example 1.2 Let $V = W = \mathbb{C}^n$ with the inner product $\langle u, v \rangle = \sum_{i=1}^n u_i \cdot \overline{v_i}$. Let $\varphi : V \to V$ be represented by the matrix A. Then φ^* is represented by the matrix $\overline{A^T}$.

Example 1.3 Let V = C([0,1],[-1,1]) with the inner product defined as $\langle f_1, f_2 \rangle = \int_0^1 f_1(x) f_2(x) dx$, and let W = C([0,1/2],[-1,1]) with the inner product $\langle g_1,g_2 \rangle = \int_0^{1/2} g_1(x) g_2(x) dx$. Let $\varphi: V \to W$ be defined as $\varphi(f)(x) = f(2x)$. Then, $\varphi^*: W \to V$ can be defined as

$$\varphi^*(g)(y) = (1/2) \cdot g(y/2)$$
.

Exercise 1.4 Let $\varphi_{\text{left}} : \text{Fib} \to \text{Fib}$ be the left shift operator as before, and let $\langle f, g \rangle$ for $f, g \in \text{Fib}$ be defined as $\langle f, g \rangle = \sum_{n=0}^{\infty} \frac{f(n)g(n)}{C^n}$ for C > 4. Find φ_{left}^* .

We will prove that every linear transformation has a unique adjoint. However, we first need the following characterization of linear transformations from V to \mathbb{F} .

Proposition 1.5 (Riesz Representation Theorem) *Let* V *be a finite-dimensional inner product space over* \mathbb{F} *and let* $\alpha : V \to \mathbb{F}$ *be a linear transformation. Then there exists a unique* $z \in V$ *such that* $\alpha(v) = \langle z, v \rangle \ \forall v \in V$.

We only prove the theorem here for finite-dimensional spaces. However, the theorem holds for any Hilbert space, as long as the linear transformation is "continuous".

Proof: Let $\{w_1, \ldots, w_n\}$ be an orthonormal basis for V. Then check that

$$z = \sum_{i=1}^{n} \overline{\alpha(w_i)} \cdot w_i$$

must be the unique z satisfying the required property.

This can be used to prove the following:

Proposition 1.6 Let V, W be finite dimensional inner product spaces and let $\varphi : V \to W$ be a linear transformation. Then there exists a unique $\varphi^* : W \to V$, such that

$$\langle w, \varphi(v) \rangle = \langle \varphi^*(w), v \rangle \quad \forall v \in V, w \in W.$$

Proof: For each $w \in W$, the map $\langle w, \varphi(\cdot) \rangle : V \to \mathbb{F}$ is a linear transformation (check!) and hence there exists a unique $z_w \in V$ satisfying $\langle w, \varphi(v) \rangle = \langle z_w, v \rangle \ \forall v \in V$. Consider the map $\beta : W \to V$ defined as $\beta(w) = z_w$. By definition of β ,

$$\langle w, \varphi(v) \rangle = \langle \beta(w), v \rangle \quad \forall v \in V, w \in W.$$

To check that α is linear, we note that $\forall v \in V, \ \forall w_1, w_2 \in W$,

$$\langle \beta(w_1+w_2),v\rangle \ = \ \langle w_1+w_2,\varphi(v)\rangle \ = \ \langle w_1,\varphi(v)\rangle + \langle w_2,\varphi(v)\rangle \ = \ \langle \beta(w_1),v\rangle + \langle \beta(w_2),v\rangle \ ,$$
 which implies $\beta(w_1+w_2)=\beta(w_1)+\beta(w_2)$ (why?) $\beta(c\cdot w)=c\cdot \beta(w)$ follows similarly.

Note that the above proof only requires the Riesz representation theorem (to define z_w), and hence also works for Hilbert spaces (when φ is continuous).

2 Self-adjoint transformations

Definition 2.1 A linear transformation $\varphi: V \to V$ is called self-adjoint if $\varphi = \varphi^*$. Note that such a transformation necessarily needs to map v to itself, and is thus a linear operator.

Example 2.2 The transformation represented by matrix $A \in \mathbb{C}^{n \times n}$ is self-adjoint if $A = \overline{A^T}$. Such matrices are called Hermitian matrices.

Proposition 2.3 Let V be an inner product space and let $\varphi: V \to V$ be a self-adjoint linear operator. Then

- All eigenvalues of φ are real.
- If $\{w_1, \ldots, w_n\}$ are eigenvectors corresposiding to distinct eigenvalues then they are mutually orthogonal.

Proof: The first property can be observed by noting that if $v \in V \setminus \{0_V\}$ is an eigenvector with eigenvalue λ , then

$$\lambda \cdot \langle v, v \rangle \ = \ \langle v, \lambda \cdot v \rangle \ = \ \langle v, \varphi(v) \rangle \ = \ \langle \varphi^*(v), v \rangle \ = \ \langle \varphi(v), v \rangle \ = \ \overline{\lambda} \cdot \langle v, v \rangle \ .$$

Since $\langle v,v\rangle\neq 0$, we must have $\lambda=\overline{\lambda}$ which implies that $\lambda\in\mathbb{R}$. For the second part, observe that if $i\neq j$, then we have

$$\lambda_j \cdot \langle w_i, w_j \rangle = \langle w_i, \varphi(w_j) \rangle = \langle \varphi^*(w_i), w_j \rangle = \langle \varphi(w_i), w_j \rangle = \overline{\lambda_i} \cdot \langle w_i, w_j \rangle.$$

Since eigenvalues are real, we get $(\lambda_i - \lambda_j) \cdot \langle w_i, w_j \rangle = 0$, which implies $\langle w_i, w_j \rangle = 0$ using $\lambda_i \neq \lambda_j$.