
Mathematical Toolkit Autumn 2021

Lecture 9: October 26, 2021
Lecturer: Madhur Tulsiani

1 Solving systems of linear equations: Gaussian elimination

Given a system of linear equations Ax = b for A ∈ Fm×n, b ∈ Fm, recall that we can
solve the system or determine that there is no solution by converting the matrix [A | b] to
a row-reduced form using elementary row operations.

Definition 1.1 A matrix M ∈ Fm×n is said to be in row-reduced form if

- The first non-zero entry in each row (known as the leading entry) is 1.

- If the leading entry in row i0 is in column j0, then Mij = 0 for all i > i0 and j ≤ j0.

- All non-zero rows occur above the zero rows.

Notice that a matrix in the row-reduced form is always upper triangular. The system has
no solution if and only if there is a non-zero row with a leading entry in the last column
(corresponding to the entries of b). Also, if the system has a solution, then it can easily be
found using back-substitution, starting from the last non-zero row.

Also, recall that an elementary row operations consist of the following (using Mi to denote
the ith row of M):

- Swapping the rows Mi and Mj, for some i, j,∈ [m].

- Mi ← c ·Mi for some i ∈ [m], c ∈ F \ {0}.

- Mi ← Mi + c ·Mj for some i, j ∈ [m], c ∈ F.

A matrix M can always be converted to a row-reduced form using elementary row oper-
ations, which gives a general algorithm for solving a system of linear equations over any
field. However, the time taken by this algorithm can be as large as Ω(n3), which is pro-
hibitive for large matrices. In the next lecture, we will discuss methods which can take
advantage of sparsity to significantly speed up the solution of linear systems.

Exercise 1.2 Prove that performing elementary row operations on a given matrix M changes nei-
ther the row rank, nor the column rank of M. Use this to prove that for any matrix M, the row-rank
and column-rank are equal.

1

2 Solving sparse systems of linear equations

Given A ∈ Rm×n, if we have a representation of the non-zero entries of A in “list form” i.e.,
a list of the non-zero entries in each row, then the for any vector v, if the matrix has a total
of N non-zero entries, then for any vector v, the product Av can be computed using O(N)
arithmetic operations. We will keep this as our base cost and try to compute a solution to
Ax = b using as few matrix-vector multiplications as possible.

For the purposes of the discussion below, we will assume that A ∈ Rn×n is a symmetric,
positive-definite matrix (written as A � 0). This assumption is not as restrictive as it
sounds, and in particular is no more restrictive than assuming that A is invertible. Given
a system A0x = b0, we can always multiply both sides by AT

0 and obtain AT
0 A0x = AT

0 b0,
where the matrix AT

0 A0 is now positive-definite (if A0 is invertible). Note that AT
0 A0 may

not be sparse, but we can still compute AT
0 A0v in O(N) operations for any vector v using

only O(N) operations (we will also need the list of non-zero entries in every column for
this). Taking A = AT

0 A0 and b = AT
0 b0 satisfies the required assumptions.

Remark 2.1 The methods we discuss here will require analyzing distances and inner products, and
thus we will work with matrices with real entries (though everything we say will extend easily to
complex matrices).

2.1 Steepest descent

Given a system Ax = b with A � 0, we apply a method for minimizing the function

f (x) =
1
2
· 〈Ax, x〉 − 〈b, x〉+ c

for some arbitrary constant c ∈ R. This can be motivated by recalling that we originally
had the system A0x = b0 and Ax = b was obtained by multiplying both sides by AT

0 . If we
consider minimizing the least square distance, we get

‖A0x− b0‖2 = 〈A0x, A0x〉 − 2 〈b0, A0x〉+ ‖b0‖2 = 〈Ax, x〉 − 2 〈b, x〉+ ‖b0‖2 .

Of course, scaling by a factor of 2 and changing the constant term does not change the
minimizer. If x∗ is the solution to the linear system, we can also re-write the above as

‖A0(x− x∗)‖2 = 〈A(x− x∗), (x− x∗)〉 = 〈x− x∗, x− x∗〉A ,

where 〈x, y〉A denotes the function 〈Ax, y〉.

Exercise 2.2 Let A ∈ Rn×n be a positive definite matrix. Let the function µ : Rn ×Rn → R be
defined as µ(x, y) = 〈Ax, y〉. Check that µ is an inner product. We will use 〈·, ·〉A to this inner
product.

2

The inner product 〈·, ·〉A and the associated norm are sometimes more convenient for mea-
suring the distance to the solution x∗ since this distance actually measures the least square
error in the “output” A0x rather than the “input” x. We will need this inner product when
working with the conjugate gradient method.

We will use the following algorithm for solving the linear system:

- Start with an arbitrary vector x0.

- At time t, update

xt+1 = xt − η · ∇ f (xt) = η · (Axt − b) .

The method can also be analyzed by choosing an optimal step size ηt at each time t but we
will work with the simpler variant here. Let x∗ be the solution to the system Ax = b. We
note that

xt+1 − x∗ = xt − x∗ − η · A(xt − x∗) = (I − ηA)(xt − x∗) .

By induction,

xt − x∗ = (I − ηA)t(x0 − x∗) ⇒ ‖xt − x∗‖2 ≤ ‖I − ηA‖t
2 ‖x0 − x∗‖2 ,

where we used the fact that if λ is an eigenvalue of M, then λt is an eigenvalue of Mt,
which gives that

∥∥(I − ηA)t
∥∥

2 = ‖I − ηA‖t
2. Thus, if ‖I − ηA‖2 is small, we can reach a

point close to the solution x∗ in a small number of steps. We now choose η to minimize
‖I − ηA‖2. Let 0 < λ1 ≤ · · · ≤ λn denote the eigenvalues of A. Then, the eigenvalues of
I − ηA are 1− ηλ1 ≥ · · · ≥ 1− ηλn. Thus, we have

‖I − ηA‖2 = max {|1− ηλ1| , |1− ηλn|} .

Check that this is minimized for λ = 2
λ1+λn

. Plugging this, we get that

‖I − ηA‖2 = 1− 2
λn
λ1

+ 1
= 1− 2

κ + 1
.

Here κ = λn/λ1 is known as the condition number of the matrix A. Using this, we get that
‖xt − x∗‖ ≤ ε ‖x0 − x∗‖ after O(κ log(1/ε)) iterations. Notice that the cost of each iteration
is just O(1) matrix-vector multiplications.

Exercise 2.3 Obtain a similar bound for the distance ‖xt − x∗‖A defined as
√
〈(x− x∗), (x− x∗)〉A.

In the next lecture, we will discuss the conjugate gradient method, which can obtain a
similar guarantee in O(

√
κ log(1/ε)) iterations.

3

3 The conjugate gradient method

In the previous section, we saw the steepest descent or gradient descent method for finding
a solution to the linear system Ax = b for A � 0. The method guarantees ‖xt − x∗‖ ≤
ε · ‖x0 − x∗‖ after t = O(κ · log(1/ε)) iterations, where κ is the condition number of the
matrix A. We will see that the conjugate gradient can obtain a similar guarantee in O(

√
κ ·

log(1/ε)) iterations.

For the steepest descent method, if we start from x0 = 0, we get

xt − x∗ = (I − ηA)(−x∗) ,

which gives xt = p(A) · b for some polynomial p of degree at most t. The conjugate
gradient method just takes this idea of finding an x of the form p(A) · b and runs with it.
The method finds an xt = pt(A) · b where pt is the best polynomial of degree at most t
i.e., the polynomial which minimizes the function 1

2 〈Ax, x〉 − 〈b, x〉. However, the method
does not explicitly work with polynomials. Instead we use the simple observation that any
vector of the form pt(A) · b lies in the subspace Span

(
{b, Ab, . . . , Atb}

)
and the method

finds the best vector in the subspace at every time t.

Definition 3.1 Let ϕ : V → V be a linear operator on a vector space V and let v ∈ V be a vector.
The Krylov subspace of order t defined by ϕ and v is defined as

Kt(ϕ, v) := Span
({

v, ϕ(v), . . . , ϕt−1(v)
})

.

Thus, at step t of the conjugate gradient method, we find the best vector in the space
Kt(A, b) (we will just write the subspace as Kt since A and b are fixed for the entire ar-
gument). The trick of course is to be able to do this in an iterative fashion so that we can
quickly update the minimizer in the space Kt−1 to the minimizer in the space Kt. This can
be done by expressing the minimizer in Kt−1 in terms of a convenient orthonormal basis
{u0, . . . , ut−1} forKt−1. It turns out that if we work with a basis which is orthonormal with
respect to the inner product 〈·, ·〉A, at step t we only need to update the component of the
minimizer along the new vector ut we get to obtain a basis for Kt.

3.1 The algorithm

Recall that we defined the inner product 〈x, y〉A := 〈Ax, y〉 where 〈·, ·〉 denotes the stan-
dard inner product on Rn. As before we consider the function 1

2 〈Ax, x〉 − 〈b, x〉 and pick

xt := arg min
x∈Kt

f (x) .

4

This can also be thought of as finding the closest point to x∗ in the space Kt (under the
distance ‖·‖A) since

f (x) =
1
2
〈Ax, x〉 − 〈b, x〉 =

1
2
〈Ax, x〉 − 〈Ax∗, x〉 =

1
2
〈x, x〉A − 〈x

∗, x〉A

=
1
2
·
(
‖x− x∗‖2

A − ‖x
∗‖2

A

)
,

which gives
xt = arg min

x∈Kt

f (x) = arg min
x∈Kt

‖x− x∗‖A .

We have already seen how to compute find the characterize the closest point in a subspace,
to a given point. Let {u0, . . . , ut−1} be an orthonormal basis forKt under the inner product
〈·, ·〉A. Completing this to an orthonormal basis {u0, . . . , un−1} for Rn, let x∗ be expressible
as

x∗ =
n−1

∑
i=0

ci · ui =
n−1

∑
i=0
〈x∗, ui〉A · ui .

Then we know that the closest point xt in Kt, under the distance ‖·‖A is given by

xt =
t−1

∑
i=0
〈x∗, ui〉A · ui =

t−1

∑
i=0
〈Ax∗, ui〉 · ui =

t−1

∑
i=0
〈b, ui〉 · ui

Note that even thhough we do not know x∗, we can find xt given an orthonormal basis
{u0, . . . , ut−1}, since we can compute 〈b, ui〉 for all ui. This gives the following algorithm:

- Start with u0 = b/ ‖b‖A as an orthonormal basis for K1.

- Let xt = ∑t−1
i=0 〈b, ui〉 · ui for a basis {u0, . . . , ut−1} orthonormal under the inner

product 〈·, ·〉A.

- Extend {u0, . . . , ut−1} to a basis of Kt+1 by defining

vt = Atb−
t−1

∑
i=0

〈
Atb, ui

〉
A · ui and ut =

vt√
〈vt, vt〉A

.

- Update xt+1 = xt + 〈b, ut〉 · ut.

Notice that the basis extension step here seems to require O(t) matrix-vector multiplica-
tions in the tth iteration and thus we will need O(t2) matrix-vector multiplications in total
for t iterations. This would negate the quadratic advantage we are trying to gain over
steepest descent. However, in the homework you will see a way of extending the basis
using only O(1) matrix-vector multiplications in each step.

5

3.2 Bounding the number of iterations

Since xt lies in the subspace Kt, we have xt = p(A) · b for some polynomial p of degree at
most t− 1. Thus,

xt − x∗ = p(A) · b− x∗ = p(A) · A · x∗ − x∗ = (I − p(A) · A) · (x0 − x∗) ,

since x0 = 0. We can think of I − p(A)A as a polynomial q(A), where deg(q) ≤ t and
q(0) = 1. Recall from last lecture that the minimizer of f (x) is the same as the minimizer
of 〈x− x∗, x− x∗〉A = ‖x− x∗‖2

A. Since p(A)b is the minimizer of f (x) in Kt, we have

‖xt − x∗‖2
A = min

q∈Qt
‖q(A)(xo − x∗)‖2

A ,

where Qt is the set of polynomials defined as

Qt := {q ∈ R[z] | deg(q) ≤ t, q(0) = 1} .

Use the fact that if λ is an eigenvalue of a matrix M, then λt is an eigenvalue of Mt (with
the same eigenvector) to prove that the following.

Exercise 3.2 Let λ1, . . . , λn be the eigenvalues of A. Then for any polynomial q and any v ∈ Rn,

‖q(A)v‖A ≤
(

max
i
|q(λi)|

)
· ‖v‖A .

Using the above, we get that

‖xt − x∗‖A ≤
(

min
q∈Qt

max
i
|q(λi)|

)
· ‖x0 − x∗‖A .

Thus, the problem of bounding the norm of xt − x∗ is reduced to finding a polynomial q of
degree at most t such that q(0) = 1 and q(λi) is small for all i.

Exercise 3.3 Verify that using q(z) =
(

1− 2z
λ1+λn

)t
recovers the guarantee of the steepest descent

method.

Note that the conjugate gradient method itself does not need to know anything about the
optimal polynomials in the above bound. The polynomials are only used in the analy-
sis of the bound. The following claim, which can be proved by using slightly modified
Chebyshev polynomials, suffices to obtain the desired bound on the number of iterations.

Claim 3.4 For each t ∈N, there exists a polynomial qt ∈ Qt such that

|qt(z)| ≤ 2 ·
(

1− 2√
κ + 1

)t

∀z ∈ [λ1, λn] .

6

We will prove the claim later using Chebyshev polynomials. However, using the claim we
have that

‖xt − x∗‖A ≤
(

min
q∈Qt

max
i
|q(λi)|

)
· ‖x0 − x∗‖A ≤ 2 ·

(
1− 2√

κ + 1

)t

· ‖x0 − x∗‖A .

Thus, O(
√

κ log(1/ε)) iterations suffice to ensure that ‖xt − x∗‖A ≤ ε · ‖x0 − x∗‖A.

3.3 Chebyshev polynomials

The Chebyshev polynomial of degree t is given by the expression

Pt(z) =
1
2
·
[(

z +
√

z2 − 1
)t

+
(

z−
√

z2 − 1
)t
]

.

Note that this is a polynomial since the odd powers of
√

z2 − 1 will cancel from the two
expansions. For z ∈ [−1, 1] this can also be written as

Pt(z) = cos
(

t cos−1(z)
)

,

which shows that Pt(z) ∈ [−1, 1] for all z ∈ [−1, 1].

Using these polynomials, we can define the required polynomials qt as

qt(z) =
Pt

(
λ1+λn−2z

λn−λ1

)
Pt

(
λ1+λn
λn−λ1

) .

The denominator is a constant which does not depend on z and the numerator is a poly-
nomial of degree t in z. Hence deg(qt) = t. Also, the denominator ensures that qt(0) = 1.
Finally, for z ∈ [λ1, λn], we have

∣∣∣λ1+λn−2z
λn−λ1

∣∣∣ ≤ 1. Hence, the numerator is in the range
[−1, 1] for all z ∈ [λ1, λn]. This gives

|qt(z)| ≤
1

Pt

(
λ1+λn
λn−λ1

) ≤ 2 ·
(√

κ − 1√
κ + 1

)t

= 2 ·
(

1− 2√
κ + 1

)t

.

The last bound above can be computed directly from the first definition of the Chebyshev
polynomials.

An detailed treatment of the conjugate gradient method, and a related method called the
Lanczos Method, which also uses the Krylov subspace, can be found in the excellent mono-
graph by Vishnoi [Vis13].

7

References

[Vis13] Nisheeth K. Vishnoi, Lx = b, Foundations and Trends in Theoretical Computer
Science 8 (2013), no. 12, 1–141. 7

8

	Solving systems of linear equations: Gaussian elimination
	Solving sparse systems of linear equations
	Steepest descent

	The conjugate gradient method
	The algorithm
	Bounding the number of iterations
	Chebyshev polynomials

