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1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let
a1, . . . , an ∈ Rd be points which we want to fit to a low-dimensional subspace. The goal
is to find a subspace S of Rd of dimension at most k to minimize ∑n

i=1 (dist(ai, S))2, where
dist(ai, S) denotes the distance of ai from the closest point in S. We first prove the follow-
ing.

Claim 1.1 Let u1, . . . , uk be an orthonormal basis for S. Then

(dist(ai, S))2 = ∥ai∥2
2 −

k

∑
j=1

〈
ai, uj

〉2 .

Proof: Complete u1, . . . , uk to an orthonormal basis uk+1, . . . , ud for all of Rd. For any
point v ∈ Rd, where exist c1, . . . , cd ∈ R such that v = ∑d

j=1 cj · uj. To find the distance
dist(v, S) = minu∈S ∥v − u∥, we need to find the point u ∈ S, which is closest to v.

Let u = ∑k
j=1 bj · uk be an arbitrary point in S (any u ∈ S can be written in this form, since

u1, . . . , uk form a basis for S). We have that

∥v − u∥2 =

∥∥∥∥∥ k

∑
j=1

(cj − bj) · uj +
d

∑
j=k+1

cj · uj

∥∥∥∥∥
2

=
k

∑
j=1

(cj − bj)
2 +

d

∑
j=k+1

c2
j ,

which is minimized when bj = cj for all j ∈ [k]. Thus, the cloest point u ∈ S to v =

∑d
j=1 cj · uj is given by u = ∑k

j=1 cj · uj, with v− u = ∑d
j=k+1 cj · uj. Moreover, since u1, . . . , ud

form an orthonormal basis, we have cj =
〈
uj, v

〉
for all j ∈ [d], which gives

∥v − u∥2 =
d

∑
j=k+1

c2
j =

d

∑
j=1

c2
j −

k

∑
j=1

c2
j = ∥v∥2 −

k

∑
j=1

〈
uj, v

〉2 .

Using the above for each ai (as the point v) completes the proof.
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Thus, the goal is to find a set of k orthonormal vectors u1, . . . , uk to maximize the quantity
∑n

i=1 ∑k
j=1

〈
ai, uj

〉2. Let A ∈ Rn×d be a matrix with the ith row equal to aT
i . Then, we need

to find orthonormal vectors u1, . . . , uk to maximize ∥Au1∥2
2 + · · ·+ ∥Auk∥2

2. We will prove
the following.

Proposition 1.2 Let v1, . . . , vr be the right singular vectors of A corresponding to singular values
σ1 ≥ · · · ≥ σr > 0. Then, for all k ≤ r and all orthonormal sets of vectors u1, . . . , uk

∥Au1∥2
2 + · · ·+ ∥Auk∥2

2 ≤ ∥Av1∥2
2 + · · ·+ ∥Avk∥2

2

Thus, the optimal solution is to take S = Span (v1, . . . , vk). We prove the above by induc-
tion on k. For k = 1, we note that

∥Au1∥2
2 =

〈
AT Au1, u1

〉
≤ max

v∈Rd\{0}
RAT A(v) = σ2

1 = ∥Av1∥2
2 .

To prove the induction step for a given k ≤ r, define

V⊥
k−1 =

{
v ∈ Rd | ⟨v, vi⟩ = 0 ∀i ∈ [k − 1]

}
.

First prove the following claim.

Claim 1.3 Given an orthonormal set u1, . . . , uk, there exist orthonormal vectors u′
1, . . . , u′

k such
that

- u′
k ∈ V⊥

k−1.

- Span (u1, . . . , uk) = Span
(
u′

1, . . . , u′
k

)
.

- ∥Au1∥2
2 + · · ·+ ∥Auk∥2

2 = ∥Au′
1∥

2
2 + · · ·+

∥∥Au′
k

∥∥2
2.

Proof: We only provide a sketch of the proof here. Let S = Span ({u1, . . . , uk}). Note that
dim

(
V⊥

k−1

)
= d − k + 1 (why?) and dim(S) = k. Thus,

dim
(

V⊥
k−1 ∩ S

)
≥ k + (d − k + 1)− d = 1 .

Hence, there exists u′
k ∈ V⊥

k−1 ∩ S with
∥∥u′

k

∥∥ = 1. Completing this to an orthonormal basis
of S gives orthonormal u′

1, . . . , u′
k with the first and second properties. We claim that this

already implies the third property (why?).
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Thus, we can assume without loss of generality that the given vectors u1, . . . , uk are such
that uk ∈ V⊥

k−1. Hence,

∥Auk∥2
2 ≤ max

v∈V⊥
k−1

∥v∥=1

∥Av∥2
2 = σ2

k = ∥Avk∥2
2 .

Also, by the inductive hypothesis, we have that

∥Au1∥2
2 + · · ·+ ∥Auk−1∥2

2 ≤ ∥Av1∥2
2 + · · ·+ ∥Avk−1∥2

2 ,

which completes the proof. The above proof can also be used to prove that SVD gives the
best rank k approximation to the matrix A in Frobenius norm. We will see this in the next
homework.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given
by the Gershgorin disc theorem. Many useful variants of this bound can also be derived
from the observation that for any invertible matrix S, the matrices S−1MS and M have the
same eigenvalues (prove it!).

Theorem 2.1 (Gershgorin Disc Theorem) Let M ∈ Cn×n. Let Ri = ∑j ̸=i
∣∣Mij

∣∣. Define the
set

Disc(Mii, Ri) := {z | z ∈ C, |x − Mii| ≤ Ri} .

If λ is an eigenvalue of M, then

λ ∈
n⋃

i=1

Disc(Mii, Ri) .

Proof: Let x ∈ Cn be an eigenvector corresponding to the eigenvalue λ. Let i0 =
argmaxi∈[n]{|xi|}. Since x is an eigenvector, we have

Mx = λx ⇒ ∀i ∈ [n]
n

∑
j=1

Mijzj = λxi .

In particular, we have that for i = i0,
n

∑
j=1

Mi0 jxj = λxi0 ⇒
n

∑
j=1

Mi0 j
xj

xi0
= λ ⇒ ∑

j ̸=i0

Mi0 j
xj

xi0
= λ − Mi0i0 .

Thus, we have

|λ − Mi0i0 | ≤ ∑
j ̸=i0

∣∣Mi0 j
∣∣ · ∣∣∣∣ xj

xi0

∣∣∣∣ ≤ ∑
j ̸=i0

∣∣Mi0 j
∣∣ = Ri0 .
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2.1 An application to compressed sensing

The Gershgorin disc theorem is quite useful in compressed sensing, to ensure what is
known as the “Restricted Isometry Property” for the measurement matrices.

Definition 2.2 A matrix A ∈ Rk×n is said to have the restricted isometry property with parame-
ters (s, δs) if

(1 − δs) · ∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δs) · ∥x∥2

for all x ∈ Rn which satisfy |{i | xi ̸= 0}| ≤ s.

Thus, we want the transformation A to be approximately norm preserving for all sparse
vectors x. This can of course be ensured for all x by taking A = id, but we require k ≪ n
for the applications in compressed sensing. In general, the restricted isometry property
is NP-hard to verify and can thus also be hard to reason about for a given matrix. The
Gershgorin Disc Theorem lets us derive a much easier condition which is sufficient to
ensure the restricted isometry property.

Definition 2.3 Let A ∈ Rk×n be such that
∥∥∥A(i)

∥∥∥ = 1 for each column A(i) of A. Define the
coherence of A as

µ(A) = max
i ̸=j

∣∣∣〈A(i), A(j)
〉∣∣∣ .

We will prove the following

Proposition 2.4 Let A ∈ Rk×n be such that
∥∥∥A(i)

∥∥∥ = 1 for each column A(i) of A. Then, for any
s, the matrix A has the restricted isometry property with parameters (s, (s − 1)µ(A)).

Note that the bound becomes meaningless if s ≥ 1+ 1
µ(A)

. However, the above proposition
shows that it may be sufficient to bound µ(A) (which is also easier to check in practice).

Proof: Consider any x such that |{i | xi ̸= 0}| ≤ s. Let S denote the support of x i.e.,
S = {i | xi ̸= 0}. Let AS denote the k × |S| submatrix where we only keep the columns
corresponding to indices in S. Let xS denote x restricted to the non-zero entries. Then

∥Ax∥2 = ∥ASxS∥2 =
〈

AT
S ASxS, xS

〉
.

Thus, it suffices to bound the eigenvalues of the matrix AT
S AS. Note that (AS)ij =

〈
A(i), A(j)

〉
.

Thus the diagonal entries are 1 and the off-diagonal entries are bounded by µ(A) in abso-
lute value. By the Gershgorin Disc Theorem, for any eigenvalue λ of A, we have

|λ − 1| ≤ (s − 1) · µ(A) .
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Thus, we have

(1 − (s − 1) · µ(A)) · ∥x∥2 ≤ ∥Ax∥2 ≤ (1 + (s − 1) · µ(A)) · ∥x∥2 ,

as desired.

The theorem is also very useful for bounding how much the eigenvalues of matrix change
due to a perturbation. We will see an example of this in the homework.
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