Lecture 8: October 21, 2021

Lecturer: Madhur Tulsiani

1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let $a_1, \ldots, a_n \in \mathbb{R}^d$ be points which we want to fit to a low-dimensional subspace. The goal is to find a subspace *S* of \mathbb{R}^d of dimension at most *k* to minimize $\sum_{i=1}^n (\text{dist}(a_i, S))^2$, where $\text{dist}(a_i, S)$ denotes the distance of a_i from the closest point in *S*. We first prove the following.

Claim 1.1 Let u_1, \ldots, u_k be an orthonormal basis for S. Then

$$(\operatorname{dist}(a_i, S))^2 = ||a_i||_2^2 - \sum_{j=1}^k \langle a_i, u_j \rangle^2.$$

Proof: Complete u_1, \ldots, u_k to an orthonormal basis u_{k+1}, \ldots, u_d for all of \mathbb{R}^d . For any point $v \in \mathbb{R}^d$, where exist $c_1, \ldots, c_d \in \mathbb{R}$ such that $v = \sum_{j=1}^d c_j \cdot u_j$. To find the distance dist $(v, S) = \min_{u \in S} ||v - u||$, we need to find the point $u \in S$, which is closest to v.

Let $u = \sum_{j=1}^{k} b_j \cdot u_k$ be an arbitrary point in *S* (any $u \in S$ can be written in this form, since u_1, \ldots, u_k form a basis for *S*). We have that

$$\|v-u\|^2 = \left\|\sum_{j=1}^k (c_j-b_j)\cdot u_j + \sum_{j=k+1}^d c_j\cdot u_j\right\|^2 = \sum_{j=1}^k (c_j-b_j)^2 + \sum_{j=k+1}^d c_j^2,$$

which is minimized when $b_j = c_j$ for all $j \in [k]$. Thus, the cloest point $u \in S$ to $v = \sum_{j=1}^{d} c_j \cdot u_j$ is given by $u = \sum_{j=1}^{k} c_j \cdot u_j$, with $v - u = \sum_{j=k+1}^{d} c_j \cdot u_j$. Moreover, since u_1, \ldots, u_d form an *orthonormal* basis, we have $c_j = \langle u_j, v \rangle$ for all $j \in [d]$, which gives

$$\|v-u\|^2 = \sum_{j=k+1}^d c_j^2 = \sum_{j=1}^d c_j^2 - \sum_{j=1}^k c_j^2 = \|v\|^2 - \sum_{j=1}^k \langle u_j, v \rangle^2.$$

Using the above for each a_i (as the point v) completes the proof.

1

Autumn 2021

Thus, the goal is to find a set of *k* orthonormal vectors u_1, \ldots, u_k to maximize the quantity $\sum_{i=1}^{n} \sum_{j=1}^{k} \langle a_i, u_j \rangle^2$. Let $A \in \mathbb{R}^{n \times d}$ be a matrix with the *i*th row equal to a_i^T . Then, we need to find orthonormal vectors u_1, \ldots, u_k to maximize $||Au_1||_2^2 + \cdots + ||Au_k||_2^2$. We will prove the following.

Proposition 1.2 Let v_1, \ldots, v_r be the right singular vectors of A corresponding to singular values $\sigma_1 \ge \cdots \ge \sigma_r > 0$. Then, for all $k \le r$ and all orthonormal sets of vectors u_1, \ldots, u_k

 $||Au_1||_2^2 + \dots + ||Au_k||_2^2 \leq ||Av_1||_2^2 + \dots + ||Av_k||_2^2$

Thus, the optimal solution is to take $S = \text{Span}(v_1, ..., v_k)$. We prove the above by induction on k. For k = 1, we note that

$$||Au_1||_2^2 = \langle A^T A u_1, u_1 \rangle \leq \max_{v \in \mathbb{R}^d \setminus \{0\}} \mathcal{R}_{A^T A}(v) = \sigma_1^2 = ||Av_1||_2^2.$$

To prove the induction step for a given $k \leq r$, define

$$V_{k-1}^{\perp} = \left\{ v \in \mathbb{R}^d \mid \langle v, v_i \rangle = 0 \ \forall i \in [k-1]
ight\}.$$

First prove the following claim.

Claim 1.3 Given an orthonormal set u_1, \ldots, u_k , there exist orthonormal vectors u'_1, \ldots, u'_k such that

- $u'_k \in V_{k-1}^\perp$.
- Span $(u_1, \ldots, u_k) =$ Span (u'_1, \ldots, u'_k) .
- $\|Au_1\|_2^2 + \dots + \|Au_k\|_2^2 = \|Au_1'\|_2^2 + \dots + \|Au_k'\|_2^2.$

Proof: We only provide a sketch of the proof here. Let $S = \text{Span}(\{u_1, \ldots, u_k\})$. Note that $\dim(V_{k-1}^{\perp}) = d - k + 1$ (why?) and $\dim(S) = k$. Thus,

$$\dim\left(V_{k-1}^{\perp}\cap S\right) \geq k+(d-k+1)-d = 1.$$

Hence, there exists $u'_k \in V_{k-1}^{\perp} \cap S$ with $||u'_k|| = 1$. Completing this to an orthonormal basis of *S* gives orthonormal u'_1, \ldots, u'_k with the first and second properties. We claim that this already implies the third property (why?).

Thus, we can assume without loss of generality that the given vectors u_1, \ldots, u_k are such that $u_k \in V_{k-1}^{\perp}$. Hence,

$$\|Au_k\|_2^2 \leq \max_{\substack{v \in V_{k-1}^\perp \\ \|v\|=1}} \|Av\|_2^2 = \sigma_k^2 = \|Av_k\|_2^2.$$

Also, by the inductive hypothesis, we have that

$$||Au_1||_2^2 + \dots + ||Au_{k-1}||_2^2 \leq ||Av_1||_2^2 + \dots + ||Av_{k-1}||_2^2,$$

which completes the proof. The above proof can also be used to prove that SVD gives the best rank *k* approximation to the matrix *A* in Frobenius norm. We will see this in the next homework.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given by the Gershgorin disc theorem. Many useful variants of this bound can also be derived from the observation that for any invertible matrix *S*, the matrices $S^{-1}MS$ and *M* have the same eigenvalues (prove it!).

Theorem 2.1 (Gershgorin Disc Theorem) Let $M \in \mathbb{C}^{n \times n}$. Let $R_i = \sum_{j \neq i} |M_{ij}|$. Define the set

$$\text{Disc}(M_{ii}, R_i) := \{ z \mid z \in C, |x - M_{ii}| \le R_i \} .$$

If λ is an eigenvalue of M, then

$$\lambda \in \bigcup_{i=1}^n \operatorname{Disc}(M_{ii}, R_i).$$

Proof: Let $x \in \mathbb{C}^n$ be an eigenvector corresponding to the eigenvalue λ . Let $i_0 = \operatorname{argmax}_{i \in [n]} \{|x_i|\}$. Since *x* is an eigenvector, we have

$$Mx = \lambda x \quad \Rightarrow \quad \forall i \in [n] \quad \sum_{j=1}^{n} M_{ij} z_j = \lambda x_i$$

In particular, we have that for $i = i_0$,

$$\sum_{j=1}^n M_{i_0j} x_j = \lambda x_{i_0} \quad \Rightarrow \quad \sum_{j=1}^n M_{i_0j} \frac{x_j}{x_{i_0}} = \lambda \quad \Rightarrow \quad \sum_{j \neq i_0} M_{i_0j} \frac{x_j}{x_{i_0}} = \lambda - M_{i_0i_0}.$$

Thus, we have

$$|\lambda - M_{i_0 i_0}| \le \sum_{j
eq i_0} |M_{i_0 j}| \cdot \left| rac{x_j}{x_{i_0}}
ight| \le \sum_{j
eq i_0} |M_{i_0 j}| = R_{i_0}$$

2.1 An application to compressed sensing

The Gershgorin disc theorem is quite useful in compressed sensing, to ensure what is known as the "Restricted Isometry Property" for the measurement matrices.

Definition 2.2 A matrix $A \in \mathbb{R}^{k \times n}$ is said to have the restricted isometry property with parameters (s, δ_s) if

$$(1-\delta_s)\cdot \|x\|^2 \le \|Ax\|^2 \le (1+\delta_s)\cdot \|x\|^2$$

for all $x \in \mathbb{R}^n$ which satisfy $|\{i \mid x_i \neq 0\}| \leq s$.

Thus, we want the transformation A to be approximately norm preserving for all *sparse* vectors x. This can of course be ensured for all x by taking A = id, but we require $k \ll n$ for the applications in compressed sensing. In general, the restricted isometry property is NP-hard to verify and can thus also be hard to reason about for a given matrix. The Gershgorin Disc Theorem lets us derive a much easier condition which is sufficient to ensure the restricted isometry property.

Definition 2.3 Let $A \in \mathbb{R}_{k \times n}$ be such that $||A^{(i)}|| = 1$ for each column $A^{(i)}$ of A. Define the coherence of A as

$$\mu(A) = \max_{i \neq j} \left| \left\langle A^{(i)}, A^{(j)} \right\rangle \right| \, .$$

We will prove the following

Proposition 2.4 Let $A \in \mathbb{R}^{k \times n}$ be such that $||A^{(i)}|| = 1$ for each column $A^{(i)}$ of A. Then, for any s, the matrix A has the restricted isometry property with parameters $(s, (s-1)\mu(A))$.

Note that the bound becomes meaningless if $s \ge 1 + \frac{1}{\mu(A)}$. However, the above proposition shows that it may be sufficient to bound $\mu(A)$ (which is also easier to check in practice).

Proof: Consider any *x* such that $|\{i \mid x_i \neq 0\}| \leq s$. Let *S* denote the support of *x* i.e., $S = \{i \mid x_i \neq 0\}$. Let A_S denote the $k \times |S|$ submatrix where we only keep the columns corresponding to indices in *S*. Let x_S denote *x* restricted to the non-zero entries. Then

$$||Ax||^2 = ||A_Sx_S||^2 = \langle A_S^T A_Sx_S, x_S \rangle.$$

Thus, it suffices to bound the eigenvalues of the matrix $A_S^T A_S$. Note that $(A_S)_{ij} = \langle A^{(i)}, A^{(j)} \rangle$. Thus the diagonal entries are 1 and the off-diagonal entries are bounded by $\mu(A)$ in absolute value. By the Gershgorin Disc Theorem, for any eigenvalue λ of A, we have

$$|\lambda - 1| \leq (s - 1) \cdot \mu(A).$$

Thus, we have

$$(1 - (s - 1) \cdot \mu(A)) \cdot \|x\|^2 \le \|Ax\|^2 \le (1 + (s - 1) \cdot \mu(A)) \cdot \|x\|^2$$
,

as desired.

The theorem is also very useful for bounding how much the eigenvalues of matrix change due to a perturbation. We will see an example of this in the homework.