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1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let
ay,...,a, € R be points which we want to fit to a low-dimensional subspace. The goal
is to find a subspace S of R of dimension at most k to minimize Y, (dist(a;, S))?, where
dist(a;, S) denotes the distance of 4; from the closest point in S. We first prove the follow-
ing.

Claim 1.1 Let uy, ..., uy be an orthonormal basis for S. Then

k

(dist(a;,$))* = [lail3 — Y (a;,u;)* .

j=1

Proof: Complete uy,...,u; to an orthonormal basis w1, ..., uy for all of R?. For any
point v € R?, where exist cy, . .. ,cq € Rsuch that v = 2}1:1 Cj -+ Uj. To find the distance
dist(v, S) = minyeg ||v — u||, we need to find the point u € S, which is closest to v.

Letu = Z;-‘Zl bj - uy be an arbitrary point in S (any u € S can be written in this form, since
uy,...,u; form a basis for S). We have that
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lo—ull® = |[X(cj=bp)-uj+ Y ¢-up| = Y (—b)*+ Y o,
=1 j=k+1 i=1 j=k+1

which is minimized when b; = ¢; for all j € [k]. Thus, the cloest point u € Stov =
Z}i:l cj-ujis givenby u = Z}‘:l ¢j-uj,withv—u = Z}izkﬂ ¢j - uj. Moreover, since uy, ..., g
form an orthonormal basis, we have c¢; = (u;j,v) for all j € [d], which gives
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lo—ul® = Y ¢ =Y =Y. = [v|" =) (u0) .
j=k+1 j=1 j=1 j=1
Using the above for each 4; (as the point v) completes the proof. |



Thus, the goal is to find a set of k orthonormal vectors uy, . .., u; to maximize the quantity
Yo Z;-;l (aj, uj>2. Let A € R"* be a matrix with the i’ row equal to a!. Then, we need

to find orthonormal vectors u, . . ., u; to maximize || Auy|[5 + - - - + || Aug]|5. We will prove
the following.

Proposition 1.2 Let vy, ..., v, be the right singular vectors of A corresponding to singular values
o1 > -+ >0y > 0. Then, for all k < r and all orthonormal sets of vectors uy, ..., uy

2 2 2 2
[Aug|ly + -+ [[Augl; < [JAvr]]; + -+ + [ Aokl

Thus, the optimal solution is to take S = Span (v, ..., vk). We prove the above by induc-
tion on k. For k = 1, we note that

Aup|? = ATAu,u < max R v) = 62 = ||Av?.
[Awls = (ATAwun) < max Runs(e) = of = [[Ani]3

To prove the induction step for a given k < r, define
Vi, = {v ERY| (v,0,) =0 Vie [k—l]} .
First prove the following claim.

Claim 1.3 Given an orthonormal set uy, ..., uy, there exist orthonormal vectors uf, ..., uf( such
that

- Span (u1,...,ux) = Span (u},..., u}).

2 2 2 2
- [JAug||3 + - A = HA”/1H2+"'+HA”;<H2'

Proof: We only provide a sketch of the proof here. Let S = Span ({11, ..., u;}). Note that
dim (V- ;) =d — k+ 1 (why?) and dim(S) = k. Thus,

dim (Vi NS) > k+(d—k+1)—d = 1.

Hence, there exists u} € Vi, N S with ||u}|| = 1. Completing this to an orthonormal basis
of S gives orthonormal w7, ...,u; with the first and second properties. We claim that this
already implies the third property (why?). ]



Thus, we can assume without loss of generality that the given vectors uy, ..., u; are such
that uy € V- |. Hence,

2 2 2
lAug; < max [|Avf; = of = [|Avel; -

eV,

[[oll=1

Also, by the inductive hypothesis, we have that
1Al + -+ Al < [ Avrlly+ -+ [ Aveallz

which completes the proof. The above proof can also be used to prove that SVD gives the
best rank k approximation to the matrix A in Frobenius norm. We will see this in the next
homework.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given
by the Gershgorin disc theorem. Many useful variants of this bound can also be derived
from the observation that for any invertible matrix S, the matrices S~1MS and M have the
same eigenvalues (prove it!).

Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"*". Let R; = } ;4 |Mjj|. Define the
set
DiSC(MZ‘Z‘, Ri) = {Z | ze€(C, ]x — Mi," < Ri} .

If A is an eigenvalue of M, then

n

A E UDiSC(Mﬁ,Ri) .

i=1
Proof: Let x € C”" be an eigenvector corresponding to the eigenvalue A. Let iy =
argmax; [, {|xi|}. Since x is an eigenvector, we have

n
Mx=Ax = Vie[n] ) Mz = Ax.
j=1
In particular, we have that for i = iy,

n n X X
_ _ Y A A M.
Y Mijxj = Axip = ) Mij—— = A =} Mij— = A= M.
=1 j=1 fo i io
Thus, we have

x.
A= M| <Y [Migj| - |-
J#io

< E|Mi0]" = Rj,.
j#io

1o



2.1 An application to compressed sensing

The Gershgorin disc theorem is quite useful in compressed sensing, to ensure what is
known as the “Restricted Isometry Property” for the measurement matrices.

Definition 2.2 A matrix A € R*" is said to have the restricted isometry property with parame-
ters (s, ds) if
(1=6)-[Ix[* < JAx[* < (1+6)- x|

forall x € R" which satisfy |{i | x; # 0} <s.

Thus, we want the transformation A to be approximately norm preserving for all sparse
vectors x. This can of course be ensured for all x by taking A = id, but we require k < n
for the applications in compressed sensing. In general, the restricted isometry property
is NP-hard to verify and can thus also be hard to reason about for a given matrix. The
Gershgorin Disc Theorem lets us derive a much easier condition which is sufficient to
ensure the restricted isometry property.

Definition 2.3 Let A € Ry, be such that HA(i)

coherence of A as

= 1 for each column A of A. Define the

) = | (a0,40)|

We will prove the following

Proposition 2.4 Let A € R¥*" be such that HAW ) = 1 for each column AY) of A. Then, for any
s, the matrix A has the restricted isometry property with parameters (s, (s — 1)u(A)).

Note that the bound becomes meaningless if s > 1+ ﬁ. However, the above proposition

shows that it may be sufficient to bound y(A) (which is also easier to check in practice).

Proof: Consider any x such that |{i | x; # 0}| < s. Let S denote the support of x i.e.,
S = {i| x; # 0}. Let Ag denote the k x |S| submatrix where we only keep the columns
corresponding to indices in S. Let x5 denote x restricted to the non-zero entries. Then

lAx|? = JlAsxs|? = (AFAsxs,xs) -

Thus, it suffices to bound the eigenvalues of the matrix AST;A s. Note that (A 5),7' = <A(i), AU >

Thus the diagonal entries are 1 and the off-diagonal entries are bounded by y(A) in abso-
lute value. By the Gershgorin Disc Theorem, for any eigenvalue A of A, we have

A=1] < (s=1)-u(A).

4



Thus, we have
(1= (s=1)-u(A) - x> < [Ax[]> < (14 (s=1)-p(A)-|x[*,
as desired. m

The theorem is also very useful for bounding how much the eigenvalues of matrix change
due to a perturbation. We will see an example of this in the homework.
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