Lecture 8: October 21, 2021
Lecturer: Madhur Tulsiani

1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ be points which we want to fit to a low-dimensional subspace. The goal is to find a subspace S of \mathbb{R}^{d} of dimension at most k to minimize $\sum_{i=1}^{n}\left(\operatorname{dist}\left(a_{i}, S\right)\right)^{2}$, where $\operatorname{dist}\left(a_{i}, S\right)$ denotes the distance of a_{i} from the closest point in S. We first prove the following.

Claim 1.1 Let u_{1}, \ldots, u_{k} be an orthonormal basis for S. Then

$$
\left(\operatorname{dist}\left(a_{i}, S\right)\right)^{2}=\left\|a_{i}\right\|_{2}^{2}-\sum_{j=1}^{k}\left\langle a_{i}, u_{j}\right\rangle^{2}
$$

Proof: Complete u_{1}, \ldots, u_{k} to an orthonormal basis u_{k+1}, \ldots, u_{d} for all of \mathbb{R}^{d}. For any point $v \in \mathbb{R}^{d}$, where exist $c_{1}, \ldots, c_{d} \in \mathbb{R}$ such that $v=\sum_{j=1}^{d} c_{j} \cdot u_{j}$. To find the distance $\operatorname{dist}(v, S)=\min _{u \in S}\|v-u\|$, we need to find the point $u \in S$, which is closest to v.
Let $u=\sum_{j=1}^{k} b_{j} \cdot u_{k}$ be an arbitrary point in S (any $u \in S$ can be written in this form, since u_{1}, \ldots, u_{k} form a basis for S). We have that

$$
\|v-u\|^{2}=\left\|\sum_{j=1}^{k}\left(c_{j}-b_{j}\right) \cdot u_{j}+\sum_{j=k+1}^{d} c_{j} \cdot u_{j}\right\|^{2}=\sum_{j=1}^{k}\left(c_{j}-b_{j}\right)^{2}+\sum_{j=k+1}^{d} c_{j}^{2},
$$

which is minimized when $b_{j}=c_{j}$ for all $j \in[k]$. Thus, the cloest point $u \in S$ to $v=$ $\sum_{j=1}^{d} c_{j} \cdot u_{j}$ is given by $u=\sum_{j=1}^{k} c_{j} \cdot u_{j}$, with $v-u=\sum_{j=k+1}^{d} c_{j} \cdot u_{j}$. Moreover, since u_{1}, \ldots, u_{d} form an orthonormal basis, we have $c_{j}=\left\langle u_{j}, v\right\rangle$ for all $j \in[d]$, which gives

$$
\|v-u\|^{2}=\sum_{j=k+1}^{d} c_{j}^{2}=\sum_{j=1}^{d} c_{j}^{2}-\sum_{j=1}^{k} c_{j}^{2}=\|v\|^{2}-\sum_{j=1}^{k}\left\langle u_{j}, v\right\rangle^{2} .
$$

Using the above for each a_{i} (as the point v) completes the proof.

Thus, the goal is to find a set of k orthonormal vectors u_{1}, \ldots, u_{k} to maximize the quantity $\sum_{i=1}^{n} \sum_{j=1}^{k}\left\langle a_{i}, u_{j}\right\rangle^{2}$. Let $A \in \mathbb{R}^{n \times d}$ be a matrix with the $i^{\text {th }}$ row equal to a_{i}^{T}. Then, we need to find orthonormal vectors u_{1}, \ldots, u_{k} to maximize $\left\|A u_{1}\right\|_{2}^{2}+\cdots+\left\|A u_{k}\right\|_{2}^{2}$. We will prove the following.

Proposition 1.2 Let v_{1}, \ldots, v_{r} be the right singular vectors of A corresponding to singular values $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$. Then, for all $k \leq r$ and all orthonormal sets of vectors u_{1}, \ldots, u_{k}

$$
\left\|A u_{1}\right\|_{2}^{2}+\cdots+\left\|A u_{k}\right\|_{2}^{2} \leq\left\|A v_{1}\right\|_{2}^{2}+\cdots+\left\|A v_{k}\right\|_{2}^{2}
$$

Thus, the optimal solution is to take $S=\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)$. We prove the above by induction on k. For $k=1$, we note that

$$
\left\|A u_{1}\right\|_{2}^{2}=\left\langle A^{T} A u_{1}, u_{1}\right\rangle \leq \max _{v \in \mathbb{R}^{d} \backslash\{0\}} \mathcal{R}_{A^{T} A}(v)=\sigma_{1}^{2}=\left\|A v_{1}\right\|_{2}^{2}
$$

To prove the induction step for a given $k \leq r$, define

$$
V_{k-1}^{\perp}=\left\{v \in \mathbb{R}^{d} \mid\left\langle v, v_{i}\right\rangle=0 \forall i \in[k-1]\right\} .
$$

First prove the following claim.
Claim 1.3 Given an orthonormal set u_{1}, \ldots, u_{k}, there exist orthonormal vectors $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ such that

- $u_{k}^{\prime} \in V_{k-1}^{\perp}$.
$-\operatorname{Span}\left(u_{1}, \ldots, u_{k}\right)=\operatorname{Span}\left(u_{1}^{\prime}, \ldots, u_{k}^{\prime}\right)$.
$-\left\|A u_{1}\right\|_{2}^{2}+\cdots+\left\|A u_{k}\right\|_{2}^{2}=\left\|A u_{1}^{\prime}\right\|_{2}^{2}+\cdots+\left\|A u_{k}^{\prime}\right\|_{2}^{2}$.
Proof: We only provide a sketch of the proof here. Let $S=\operatorname{Span}\left(\left\{u_{1}, \ldots, u_{k}\right\}\right)$. Note that $\operatorname{dim}\left(V_{k-1}^{\perp}\right)=d-k+1$ (why?) and $\operatorname{dim}(S)=k$. Thus,

$$
\operatorname{dim}\left(V_{k-1}^{\perp} \cap S\right) \geq k+(d-k+1)-d=1
$$

Hence, there exists $u_{k}^{\prime} \in V_{k-1}^{\perp} \cap S$ with $\left\|u_{k}^{\prime}\right\|=1$. Completing this to an orthonormal basis of S gives orthonormal $u_{1}^{\prime}, \ldots, u_{k}^{\prime}$ with the first and second properties. We claim that this already implies the third property (why?).

Thus, we can assume without loss of generality that the given vectors u_{1}, \ldots, u_{k} are such that $u_{k} \in V_{k-1}^{\perp}$. Hence,

$$
\left\|A u_{k}\right\|_{2}^{2} \leq \max _{\substack{v \in V_{1}^{x}=1 \\\|v\|=1}}\|A v\|_{2}^{2}=\sigma_{k}^{2}=\left\|A v_{k}\right\|_{2}^{2} .
$$

Also, by the inductive hypothesis, we have that

$$
\left\|A u_{1}\right\|_{2}^{2}+\cdots+\left\|A u_{k-1}\right\|_{2}^{2} \leq\left\|A v_{1}\right\|_{2}^{2}+\cdots+\left\|A v_{k-1}\right\|_{2}^{2},
$$

which completes the proof. The above proof can also be used to prove that SVD gives the best rank k approximation to the matrix A in Frobenius norm. We will see this in the next homework.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given by the Gershgorin disc theorem. Many useful variants of this bound can also be derived from the observation that for any invertible matrix S, the matrices $S^{-1} M S$ and M have the same eigenvalues (prove it!).

Theorem 2.1 (Gershgorin Disc Theorem) Let $M \in \mathbb{C}^{n \times n}$. Let $R_{i}=\sum_{j \neq i}\left|M_{i j}\right|$. Define the set

$$
\operatorname{Disc}\left(M_{i i}, R_{i}\right):=\left\{z\left|z \in C,\left|x-M_{i i}\right| \leq R_{i}\right\}\right.
$$

If λ is an eigenvalue of M, then

$$
\lambda \in \bigcup_{i=1}^{n} \operatorname{Disc}\left(M_{i i}, R_{i}\right) .
$$

Proof: Let $x \in \mathbb{C}^{n}$ be an eigenvector corresponding to the eigenvalue λ. Let $i_{0}=$ $\operatorname{argmax}_{i \in[n]}\left\{\left|x_{i}\right|\right\}$. Since x is an eigenvector, we have

$$
M x=\lambda x \quad \Rightarrow \quad \forall i \in[n] \sum_{j=1}^{n} M_{i j} z_{j}=\lambda x_{i} .
$$

In particular, we have that for $i=i_{0}$,

$$
\sum_{j=1}^{n} M_{i_{0} j} x_{j}=\lambda x_{i_{0}} \Rightarrow \sum_{j=1}^{n} M_{i_{0} j} \frac{x_{j}}{x_{i_{0}}}=\lambda \Rightarrow \sum_{j \neq i_{0}} M_{i_{0} j} \frac{x_{j}}{x_{i_{0}}}=\lambda-M_{i_{0} i_{0}}
$$

Thus, we have

$$
\left|\lambda-M_{i_{0} i_{0}}\right| \leq \sum_{j \neq i_{0}}\left|M_{i_{0} j}\right| \cdot\left|\frac{x_{j}}{x_{i_{0}}}\right| \leq \sum_{j \neq i_{0}}\left|M_{i_{0} j}\right|=R_{i_{0}} .
$$

2.1 An application to compressed sensing

The Gershgorin disc theorem is quite useful in compressed sensing, to ensure what is known as the "Restricted Isometry Property" for the measurement matrices.

Definition 2.2 A matrix $A \in \mathbb{R}^{k \times n}$ is said to have the restricted isometry property with parameters $\left(s, \delta_{s}\right)$ if

$$
\left(1-\delta_{s}\right) \cdot\|x\|^{2} \leq\|A x\|^{2} \leq\left(1+\delta_{s}\right) \cdot\|x\|^{2}
$$

for all $x \in \mathbb{R}^{n}$ which satisfy $\left|\left\{i \mid x_{i} \neq 0\right\}\right| \leq s$.
Thus, we want the transformation A to be approximately norm preserving for all sparse vectors x. This can of course be ensured for all x by taking $A=$ id, but we require $k \ll n$ for the applications in compressed sensing. In general, the restricted isometry property is NP-hard to verify and can thus also be hard to reason about for a given matrix. The Gershgorin Disc Theorem lets us derive a much easier condition which is sufficient to ensure the restricted isometry property.

Definition 2.3 Let $A \in \mathbb{R}_{k \times n}$ be such that $\left\|A^{(i)}\right\|=1$ for each column $A^{(i)}$ of A. Define the coherence of A as

$$
\mu(A)=\max _{i \neq j}\left|\left\langle A^{(i)}, A^{(j)}\right\rangle\right| .
$$

We will prove the following
Proposition 2.4 Let $A \in \mathbb{R}^{k \times n}$ be such that $\left\|A^{(i)}\right\|=1$ for each column $A^{(i)}$ of A. Then, for any s, the matrix A has the restricted isometry property with parameters $(s,(s-1) \mu(A))$.

Note that the bound becomes meaningless if $s \geq 1+\frac{1}{\mu(A)}$. However, the above proposition shows that it may be sufficient to bound $\mu(A)$ (which is also easier to check in practice).

Proof: Consider any x such that $\left|\left\{i \mid x_{i} \neq 0\right\}\right| \leq s$. Let S denote the support of x i.e., $S=\left\{i \mid x_{i} \neq 0\right\}$. Let A_{S} denote the $k \times|S|$ submatrix where we only keep the columns corresponding to indices in S. Let x_{S} denote x restricted to the non-zero entries. Then

$$
\|A x\|^{2}=\left\|A_{S} x_{S}\right\|^{2}=\left\langle A_{S}^{T} A_{S} x_{S}, x_{S}\right\rangle
$$

Thus, it suffices to bound the eigenvalues of the matrix $A_{S}^{T} A_{S}$. Note that $\left(A_{S}\right)_{i j}=\left\langle A^{(i)}, A^{(j)}\right\rangle$. Thus the diagonal entries are 1 and the off-diagonal entries are bounded by $\mu(A)$ in absolute value. By the Gershgorin Disc Theorem, for any eigenvalue λ of A, we have

$$
|\lambda-1| \leq(s-1) \cdot \mu(A)
$$

Thus, we have

$$
(1-(s-1) \cdot \mu(A)) \cdot\|x\|^{2} \leq\|A x\|^{2} \leq(1+(s-1) \cdot \mu(A)) \cdot\|x\|^{2},
$$

as desired.
The theorem is also very useful for bounding how much the eigenvalues of matrix change due to a perturbation. We will see an example of this in the homework.

