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1 Orthogonality and orthonormality

Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if ⟨u, v⟩ = 0.
A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if ⟨u, v⟩ = 0 for all
u ̸= v, u, v ∈ S. A set of S ⊆ V is said to be orthonormal if ⟨u, v⟩ = 0 for all u ̸= v, u, v ∈ S
and ∥u∥ = 1 for all u ∈ S.

Proposition 1.2 A set S ⊆ V \ {0V} consisting of mutually orthogonal vectors is linearly inde-
pendent.

Proof: Let v1, . . . , vn ∈ S and c1, . . . , cn ∈ F be such that ∑i∈[n] ci · vi = 0V . Taking inner
product with a vector vj for j ∈ [n], we get that ∑i ci ·

〈
vj, vi

〉
= 0. Since vectors in S

are mutually orthogonal, we get that
〈
vj, vi

〉
= 0 when i ̸= j, which implies using the

previous equality that that cj
〈
vj, vj

〉
= 0. Since vj ̸= 0V , we must have

〈
vj, vj

〉
> 0, and

thus cj = 0. Also, since our choice of j was arbitrary, this is true for all j ∈ [n], implying
c1 = · · · = cn = 0. Thus, the only way a finite linear combination of vectors from S equals
0V , if all coefficients are 0 , which implies that S is linearly independent.

Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set {v1, . . . , vn} of linearly
independent vectors, there exists a set of orthonormal vectors {w1, . . . , wn} such that

Span ({w1, . . . , wn}) = Span ({v1, . . . , vn}) .

Proof: By induction. The case with one vector is trivial. Given the statement for k vectors
and orthonormal {w1, . . . , wk} such that

Span ({w1, . . . , wk}) = Span ({v1, . . . , vk}) ,

define

uk+1 = vk+1 −
k

∑
i=1

⟨wi, vk+1⟩ · wi and wk+1 =
uk+1

∥uk+1∥
.

It is easy to check that the set {w1, . . . , wk+1} satisfies the required conditions.
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Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis.

In fact, Hilbert spaces also have orthonormal bases (which are countable). The existence
of a maximal orthonormal set of vectors can be proved by using Zorn’s lemma, similar
to the proof of existence of a Hamel basis for a vector space. However, we still need to
prove that a maximal orthonormal set is a basis. This follows because we define the basis
slightly differently for a Hilbert space: instead of allowing only finite linear combinations,
we allow infinite ones. The correct way of saying this is that is we still think of the span as
the set of all finite linear combinations, then we only need that for any v ∈ V, we can get
arbitrarily close to v using elements in the span (a converging sequence of finite sums can
get arbitrarily close to its limit). Thus, we only need that the span is dense in the Hilbert
space V. However, if the maximal orthonormal set is not dense, then it is possible to show
that it cannot be maximal. Such a basis is known as a Hilbert basis.

1.1 Fourier coefficients

Let V be a finite dimensional inner product space and let B = {w1, . . . , wn} be an orthonor-
mal basis for V. Then for any v ∈ V, there exist c1, . . . , cn ∈ F such that v = ∑i ci · wi. The
coefficients ci are often called Fourier coefficients (of v, with respect to the basis B). Using
the orthonormality and the properties of the inner product, we get

Proposition 1.5 Let B = {w1, . . . , wn} be an orthonormal basis for V, and let v ∈ V be express-
ible as v = ∑n

i=1 ci · wi. Then, for all i ∈ [n], we must have ci = ⟨wi, v⟩.

This can be used to prove the following

Proposition 1.6 (Parseval’s identity) Let V be a finite dimensional inner product space and let
{w1, . . . , wn} be an orthonormal basis for V. Then, for any u, v ∈ V

⟨u, v⟩ =
n

∑
i=1

⟨wi, u⟩ · ⟨wi, v⟩ .

2 Adjoint of a linear transformation

Definition 2.1 Let V, W be inner product spaces over the same field F and let φ : V → W be a
linear transformation. A transformation φ∗ : W → V is called an adjoint of φ if

⟨w, φ(v)⟩ = ⟨φ∗(w), v⟩ ∀v ∈ V, w ∈ W .

Example 2.2 Let V = W = Cn with the inner product ⟨u, v⟩ = ∑n
i=1 ui · vi. Let φ : V → V be

represented by the matrix A. Then φ∗ is represented by the matrix AT.
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Example 2.3 Let V = C([0, 1], [−1, 1]) with the inner product defined as ⟨ f1, f2⟩ =
∫ 1

0 f1(x) f2(x)dx,
and let W = C([0, 1/2], [−1, 1]) with the inner product ⟨g1, g2⟩ =

∫ 1/2
0 g1(x)g2(x)dx. Let

φ : V → W be defined as φ( f )(x) = f (2x). Then, φ∗ : W → V can be defined as

φ∗(g)(y) = (1/2) · g(y/2) .

Exercise 2.4 Let φleft : Fib → Fib be the left shift operator as before, and let ⟨ f , g⟩ for f , g ∈ Fib
be defined as ⟨ f , g⟩ = ∑∞

n=0
f (n)g(n)

Cn for C > 4. Find φ∗
left.

We will prove that every linear transformation has a unique adjoint. However, we first
need the following characterization of linear transformations from V to F.

Proposition 2.5 (Riesz Representation Theorem) Let V be a finite-dimensional inner product
space over F and let α : V → F be a linear transformation. Then there exists a unique z ∈ V such
that α(v) = ⟨z, v⟩ ∀v ∈ V.

We only prove the theorem here for finite-dimensional spaces. However, the theorem
holds for any Hilbert space, as long as the linear transformation is “continuous”’.

Proof: Let {w1, . . . , wn} be an orthonormal basis for V. Then check that

z =
n

∑
i=1

α(wi) · wi

must be the unique z satisfying the required property.

This can be used to prove the following:

Proposition 2.6 Let V, W be finite dimensional inner product spaces and let φ : V → W be a
linear transformation. Then there exists a unique φ∗ : W → V, such that

⟨w, φ(v)⟩ = ⟨φ∗(w), v⟩ ∀v ∈ V, w ∈ W .

Proof: For each w ∈ W, the map ⟨w, φ(·)⟩ : V → F is a linear transformation (check!) and
hence there exists a unique zw ∈ V satisfying ⟨w, φ(v)⟩ = ⟨zw, v⟩ ∀v ∈ V. Consider the
map β : W → V defined as β(w) = zw. By definition of β,

⟨w, φ(v)⟩ = ⟨β(w), v⟩ ∀v ∈ V, w ∈ W .

To check that α is linear, we note that ∀v ∈ V, ∀w1, w2 ∈ W,

⟨β(w1 + w2), v⟩ = ⟨w1 + w2, φ(v)⟩ = ⟨w1, φ(v)⟩+ ⟨w2, φ(v)⟩ = ⟨β(w1), v⟩+ ⟨β(w2), v⟩ ,

which implies β(w1 + w2) = β(w1) + β(w2) (why?) β(c · w) = c · β(w) follows similarly.

Note that the above proof only requires the Riesz representation theorem (to define zw),
and hence also works for Hilbert spaces (when φ is continuous).
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