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1 Eigenvalues and eigenvectors

Definition 1.1 Let V be a vector space over the field IF and let ¢ : V. — V be a linear transforma-
tion. A € T is said to be an eigenvalue of ¢ if there exists v € V' \ {0y} such that ¢(v) = A - v.
Such a vector v is called an eigenvector corresponding to the eigenvalue A. The set of eigenvalues
of ¢ is called its spectrum:

spec(¢) = {A | A is an eigenvalue of ¢} .

Example 1.2 Consider the matrix

20

M = [0 0"

which can be viewed as a linear transformation from R? to R?. Note that

oolla] = 1% = 13

is only satisfied if A = 0,x1 = 0or A = 2,x2 = 0. Thus spec(M) = {0,2}.

Example 1.3 It can also be the case that spec(¢) = @, as witnessed by the rotation matrix

cosf —sin6
My = [sin() cos @ ]’

when viewed as a linear transformation from R? to R

Example 1.4 Consider the following transformations:

- Differentiation is a linear transformation on the class of (say) infinitely differentiable real-
valued functions over [0, 1] (denoted by C*([0,1],R)). Each function of the form c - exp(Ax)
is an eigenvector with eigenvalue A. If we denote the transformation by ¢o, then spec(go) =
R.



- We can also consider the transformation ¢1 : R[x] — R[x] defined by differentiation i.e., for
any polynomial P € Rlx], ¢1(P) = dP/dx. Note that now the only eigenvalue is 0, and

thus spec(¢) = {0}.

- Consider the transformation @ier, : RN — RN. Any geometric progression with common
ratio r is an eigenvector of Pies with eigenvalue r (and these are the only eigenvectors for this
transformation).

Proposition 1.5 Let Uy = {v € V | ¢(v) = A -v}. Then for each A € F, U, is a subspace of V.

Note that Uy = {0y} if A is not an eigenvalue. The dimension of this subspace is called
the geometric multiplicity of the eigenvalue A.

Proposition 1.6 Let Ay, ..., Ay be distinct eigenvalues of ¢ with associated eigenvectors vy, . .., V.
Then the set {vy, ..., v} is linearly independent.

Proof: We can prove via induction that for all » € [k], the subset {vy,...,v,} is inde-
pendent. The base case follws from the fact that v; # Oy, and thus {v;} is a linearly
independent set. For the induction step, assume that that the set {v4,...,v,} is linearly
independent.

If the set {v1, ..., v,11} is linearly dependent, there exist scalars ¢y, . .., ¢,+1 € F such that
c1-01+ - +Crq1- 041 = Oy.

Also, note that we must have at least one of ¢y, ..., ¢, # 0 (since v,41 # 0). Applying ¢ on
both sides gives
AMecr-vr+ + A1 GO = Oy
Multiplying the first equality by A, and substracting the two gives
(M= A1) er-or 4 (Ar = Apa)er -0 = Oy

Since all the eigenvalues are distinct, and at least one of cy, ..., ¢, is non-zero, the above
shows that {vy,...,v,} is linearly dependent, which contradicts the inductive hypothesis.
Thus, the set vy, ..., v,4+1 must be linearly independent. [ |

Definition 1.7 A transformation ¢ : V. — V is said to be diagonalizable if there exists a basis of
V comprising of eigenvectors of ¢.

Example 1.8 The linear transformation defined by the matrix

2 0
m=150)

is diagonalizable since there is a basis for R* formed by the eigenvectors { (1) } and [ (1) ] .
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Example 1.9 Any linear transformation ¢ : V. — V, with k distinct eigenvalues, where k =
dim(V), is diagonalizable. This is because the corresponding eigenvectors vy, . .., vy with distinct
eigenvalues will be linearly independent, and since they are k linearly independent vectors in a
space with dimension k, they must form a basis.

Exercise 1.10 Recall that Fib = {f e RN | f(n) = f(n —1) + f(n —2) Vn > 2}. Show that
@left : Fib — Fib is diagonalizable. Express the sequence by f(0) = 1, f(1) = 1and f(n) =
f(n—1)+ f(n—2)Vn > 2 (known as Fibonacci numbers) as a linear combination of eigenvectors

Of Pleft-

2 Inner Products

For the discussion below, we will take the field FF to be R or C since the definition of inner
products needs the notion of a “magnitude” for a field element (these can be defined more
generally for subfields of R and C known as Euclidean subfields, but we shall not do so
here).

Definition 2.1 Let V be a vector space over a field IF (which is taken to be R or C). A function
u:V xV — Fisan inner product if

- The function p(u,-) : V. — F is a linear transformation for every u € V.
- The function satisfies p(u,v) = u(v, u).
- 1u(v,v) € Rxg forallv € V and is 0 only for v = Oy.

We write the inner product corresponding to p as (u, U>14'

Strictly speaking, the inner product should always be written as (u, U)H, but we usually
omit the # when the function is clear from context (or we are referring to an arbitrary inner
product).

Remark 2.2 It follows from the first and second properties above, that while the linear transforma-
tion u(u,-) : V.— T is linear, the transformation u(-,v) : V. — T defined by fixing the second
input, is “anti-linear” or “conjugate-linear” satisfying

u(ug 4+ up,v) = u(uy,v) + u(ug,v) and pu(c-u,v)=c-pu(u,v).
Example 2.3 The following are all examples of inner products:

- The function fil f(x)g(x)dx for f,g € C([—1,1],R) (space of continuous functions from
[—1,1] to R).



- The function f_ll %%’;)dxfor f,g€C([-1,1,R).

- For x,y € R?, (x,y) = x1y1 + X2y» is the usual inner product. Check that (x,y) =
2x1Yy1 + X2y2 + X1Y2/2 + x2y1 /2 also defines an inner product.

Exercise 2.4 Let C > 4. Check that

Pl(f,g) — i f(n)cng(n)

n=0

defines an inner product on the space Fib.

We start with the following extremely useful inequality.

Proposition 2.5 (Cauchy-Schwarz-Bunyakovsky inequality) Let u,v be any two vectors in
an inner product space V. Then

[(w0)* < (uu)-(v,0)

Proof: To prove for general inner product spaces (not necessarily finite dimensional) we
will use the only inequality available in the definition i.e., (w,w) > 0 for all w € V. Taking
w = a-u+b-vand using the properties from the definition gives

(w,w) = ((a-u+b-v),(a-u+b-v)) = aa-(u,u)+bb-(v,0) +ab- (u,v)+ab(v,u)

Taking a = (v,v) and b = — (v, u) = —(u,v) gives
(w,w) = (u,u)-(v,0)° + |[(,0)* - (v,0) =2 [(w,0)|* - (v,0)
= (o) ((wu)-(0,0) = |(w,0)f) .
If v = Oy, then the inequality is trivial. Otherwise, we must have (v,v) > 0. Thus,

(w,w) >0 = (u,u)-(v,0)—|(u,0)* >0,

which proves the desired inequality. |

An inner product also defines a norm ||v|| = 4/(v,v) and a hence a notion of distance
between two vectors in a vector space. This is a “distance” in the following sense.

Exercise 2.6 (Triangle inequality) Prove that for any inner product space V, and any vectors

u,o,wevV
Ju—wl < flu—2o|+o—-w|.
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This can be used to define convergence of sequences, and to define infinite sums and limits
of sequences (which was not possible in an abstract vector space). However, it might
still happen that the limit of a sequence of vectors in the vector space, which converges
according to the norm defined by the inner product, may not converge to a vector in the
space. Consider the following example.

Example 2 7 Consider the vector space C([—1,1],R) with the inner product defined by (f,g) =
f f(x)g(x)dx. Consider the sequence of functions:

-1 x e [-1,3})
fulr) =4 nx x € [5h3)

One can check that || f, — fiu||* = O(1) for m > n. Thus, the sequence converges. However,
the limit point is a discontinuous function not in the inner product space. To fix this prob-
lem, one can essentially include the limit points of all the sequences in the space (known
as the completion of the space). An inner product space in which all (Cauchy) sequences
converge to a point in the space is known as a Hilbert space. Many of the theorems we will
prove will generalize to Hilbert spaces though we will only prove some of them for finite
dimensional spaces.
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