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1 Gaussian Random Variables

Recall that a Gaussian random variable X is defined through the density function

γ(x) =
1√

2πσ2
· e−

(x−µ)2

2σ2 ,

where µ is its mean and σ2 is its variance, and we write X ∼ N (µ, σ2). Before proceeding
to applications of Gaussian random variables, we prove the following fact which we will
use repeatedly.

Proposition 1.1 Let Z = c1X1 + c2X2, where X1 ∼ N (0, 1) and X2 ∼ N (0, 1) are independent.
Then Z ∼ N (0, c2

1 + c2
2).

Proof: By a simple change of variable, we can check that the density function for c1X1 is

1√
2π|c1|

e
− x2

2c2
1 , which shows that c1X1 ∼ N (0, c2

1), and similarly c2X2 ∼ N (0, c2
2).

Next, we can check that if X and Y are independent random variables with densities f and
g, then for Z = X + Y, we have

P [Z ≤ t] =
∫ t

∞

(∫ ∞

−∞
f (x) · g(z − x)dx

)
dz ,

which gives the density of Z as h(z) =
∫ ∞
−∞ f (x) · g(z − x)dx. Taking X = c1X and Y =

c2X2, we get the density of Z = c1X1 + c2X2 is

h(z) =
∫ ∞

−∞

1√
2π |c1|

· e
− x2

2c2
1 · 1√

2π |c2|
· e

− (z−x)2

2c2
2 dx .

We leave it as an exercise to show that the above integral gives

h(z) =
1√

2π(c2
1 + c2

2)
· e

− z2

2(c2
1+c2

2) ,

which implies c1X1 + c2X2 ∼ N (0, c2
1 + c2

2).
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One can obtain the following corollary using an inductive application of the above propo-
sition.

Corollary 1.2 Let X1, . . . , Xn ∼ N (0, 1) be independent standard Gaussian random variables.
Then, for any vector of coefficients c = (c1, . . . , cn), we have

Z = c1X1 + · · ·+ cnXn ∼ N (0, ∥c∥2) ,

where ∥c∥2 = c2
1 + · · ·+ c2

n.

2 Johnson–Lindenstrauss Lemma

We will use concentration bounds on Gaussian random variables to prove the following
important lemma.

Lemma 2.1 (Johnson–Lindenstrauss [JL84]) Let P be a set of n points in Rd. Let 0 < ε < 1.
For k = 8 ln n

ε2/2−ε3/3 , there exists a mapping φ : P → Rk such that for all u, v ∈ P

(1 − ε)∥u − v∥2 ≤ ∥φ(u)− φ(v)∥2 ≤ (1 + ε)∥u − v∥2 .

The above lemma is useful for dimensionality reduction, especially when a problem has
an exponential dependence on the number of dimensions.

We construct the mapping φ as follows. First choose a matrix G ∈ Rk×d such that each
Gij ∼ N (0, 1) is independent. Define

φ(u) =
Gu√

k
.

Note that by the above construction φ is oblivious, meaning that it doesn’t depend on the
points in P , and it is linear.

The strategy of proving the lemma is to first prove that with high probability the lemma
holds for any fixed two points and then apply union bounds to get the result for all pairs
of points.

Claim 2.2 Fix u, v ∈ P . Let w = u − v. With probability greater than 1 − 1/n3, the following
inequality holds,

(1 − ε) · ∥w∥2 ≤ ∥φ(w)∥2 ≤ (1 + ε) · ∥w∥2 .

Proof: Recall that φ(u) = Gu√
k
. Let

Z =
k∥φ(w)∥2

∥w∥2 =
∑k

i=1(Gw)2
i

∥w∥2 .
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We need to show (1 − ε)k ≤ Z ≤ (1 + ε)k. We know that the sum of Gaussian random
variables is still a Gaussian random variable, so (Gw)i = Giw = ∑n

j=1 Gijwj is a Gaussian

variable. Besides, Var
[
∑n

j=1 Gijwj

]
= ∑j w2

j = ∥w∥2 according to Fact ??. In other words,

Giw ∼ N (0, ∥w∥2). As a result, Z = ∑k
i=1

(Gw)2
i

∥w∥2 = ∑k
i=1 X2

i , where Xi ∼ N (0, 1). The
expectation of each individual element in Gw is

E
[
(Gw)2

i
]
= E

[
(Giw)2] = E

( n

∑
j=1

Gijwj

)2
 = Var

[
n

∑
j=1

Gijwj

]
= ∥w∥2 .

In addition,

E [Z] =
∑k

j=1 E
[
(Gw)2

i
]

∥w∥2 = k .

Now we prove the concentration bound for Z. The proof is almost identical to Chernoff
bound.

P [Z ≥ (1 + ε)k] ≤ P
[
etZ ≥ eλ·(1+ε)k

]
≤

E
[
eλ·Z]

eλ·(1+ε)k
(by Markov’s inequality)

=
E
[
eλ·∑k

i=1 X2
i

]
eλ·(1+ε)k

=
∏k

i=1 E
[
eλ·X2

i

]
eλ·(1+ε)k

(by the independence of X1, . . . , Xk)

=
∏k

i=1
1√

1−2λ

eλ·(1+ε)k
(by Lemma ??)

≤
(

e−2(1+ε)λ

1 − 2λ

)k/2

(assume λ < 1/2)

≤ (e−ε(1 + ε))k/2 (let λ =
ε

2(1 + ε)
)

≤
(
(1 − ε +

ε2

2
)(1 + ε)

)k/2

(by Taylor expansion of e−x)

≤ e−
(

ε2
2 − ε3

2

)
k
2 (by 1 + x ≤ ex)

We can derive the other side of the inequality in an analogous way. Thus, we have

P [|Z − k| ≥ εk] ≤ 2 · exp
(
−
(

ε2

2
− ε3

2

)
k
2

)
≤ 2 · exp (−3 ln n) =

2
n3 ,

where we choose

k =

⌈
6 ln n
ε2

2 − ε3

2

⌉
.
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To prove Johnson–Lindenstrauss Lemma, we apply the union bound and get the desired
result

P
[
∀u, v ∈ P , (1 − ε)∥u − v∥2 ≤ ∥φ(u)− φ(v)∥2 ≤ (1 + ε)∥u − v∥2] ≥ 1 −

(
n
2

)
2
n3

≥ 1 − 1
n

.
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